Coarse-Grained Sense Inventories Based on Semantic Matching between English Dictionaries
- URL: http://arxiv.org/abs/2409.06386v1
- Date: Tue, 10 Sep 2024 10:08:58 GMT
- Title: Coarse-Grained Sense Inventories Based on Semantic Matching between English Dictionaries
- Authors: Masato Kikuchi, Masatsugu Ono, Toshioki Soga, Tetsu Tanabe, Tadachika Ozono,
- Abstract summary: We semantically match sense definitions from Cambridge dictionaries and WordNet and develop new coarse-grained sense inventories.
The advantages of the proposed inventories include their low dependency on large-scale resources, better aggregation of closely related senses, CEFR-level assignments, and ease of expansion and improvement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: WordNet is one of the largest handcrafted concept dictionaries visualizing word connections through semantic relationships. It is widely used as a word sense inventory in natural language processing tasks. However, WordNet's fine-grained senses have been criticized for limiting its usability. In this paper, we semantically match sense definitions from Cambridge dictionaries and WordNet and develop new coarse-grained sense inventories. We verify the effectiveness of our inventories by comparing their semantic coherences with that of Coarse Sense Inventory. The advantages of the proposed inventories include their low dependency on large-scale resources, better aggregation of closely related senses, CEFR-level assignments, and ease of expansion and improvement.
Related papers
- Semantic Specialization for Knowledge-based Word Sense Disambiguation [12.573927420408365]
A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings are closest to those computed for a target word in a given sentence.
We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge.
arXiv Detail & Related papers (2023-04-22T07:40:23Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
A novel machine reasoning framework is proposed to disentangle source data so as to make it semantic-ready.
In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data.
Deep semantic clusters of highest confidence are considered learnable, semantic-rich data.
Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism.
arXiv Detail & Related papers (2022-12-18T12:00:12Z) - Connect-the-Dots: Bridging Semantics between Words and Definitions via
Aligning Word Sense Inventories [47.03271152494389]
Word Sense Disambiguation aims to automatically identify the exact meaning of one word according to its context.
Existing supervised models struggle to make correct predictions on rare word senses due to limited training data.
We propose a gloss alignment algorithm that can align definition sentences with the same meaning from different sense inventories to collect rich lexical knowledge.
arXiv Detail & Related papers (2021-10-27T00:04:33Z) - Large Scale Substitution-based Word Sense Induction [48.49573297876054]
We present a word-sense induction method based on pre-trained masked language models (MLMs), which can cheaply scale to large vocabularies and large corpora.
The result is a corpus which is sense-tagged according to a corpus-derived sense inventory and where each sense is associated with indicative words.
Evaluation on English Wikipedia that was sense-tagged using our method shows that both the induced senses, and the per-instance sense assignment, are of high quality even compared to WSD methods, such as Babelfy.
arXiv Detail & Related papers (2021-10-14T19:40:37Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
We leverage the rich semantic structures in WordNet to enhance the quality of multi-sense embeddings.
We derive new distributional semantic similarity measures for M-SE from prior ones.
We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks.
arXiv Detail & Related papers (2021-02-27T14:36:55Z) - SensPick: Sense Picking for Word Sense Disambiguation [1.1429576742016154]
We use both context and related gloss information of a target word to model the semantic relationship between the word and the set of glosses.
We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task.
arXiv Detail & Related papers (2021-02-10T04:52:42Z) - R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic
Matching [58.72111690643359]
We propose a Relation of Relation Learning Network (R2-Net) for sentence semantic matching.
We first employ BERT to encode the input sentences from a global perspective.
Then a CNN-based encoder is designed to capture keywords and phrase information from a local perspective.
To fully leverage labels for better relation information extraction, we introduce a self-supervised relation of relation classification task.
arXiv Detail & Related papers (2020-12-16T13:11:30Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
We operationalise the lexical ambiguity of a word as the entropy of meanings it can take.
We find significant correlations between our estimate of ambiguity and the number of synonyms a word has in WordNet.
This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.
arXiv Detail & Related papers (2020-10-05T17:19:10Z) - Moving Down the Long Tail of Word Sense Disambiguation with
Gloss-Informed Biencoders [79.38278330678965]
A major obstacle in Word Sense Disambiguation (WSD) is that word senses are not uniformly distributed.
We propose a bi-encoder model that independently embeds (1) the target word with its surrounding context and (2) the dictionary definition, or gloss, of each sense.
arXiv Detail & Related papers (2020-05-06T04:21:45Z) - Don't Neglect the Obvious: On the Role of Unambiguous Words in Word
Sense Disambiguation [5.8523859781812435]
We show how a state-of-the-art propagation-based model can use it to extend the coverage and quality of its word sense embeddings.
We introduce the UWA (Unambiguous Word s) dataset and show how a state-of-the-art propagation-based model can use it to extend the coverage and quality of its word sense embeddings.
arXiv Detail & Related papers (2020-04-29T16:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.