Robust semi-parametric signal detection in particle physics with classifiers decorrelated via optimal transport
- URL: http://arxiv.org/abs/2409.06399v1
- Date: Tue, 10 Sep 2024 10:32:21 GMT
- Title: Robust semi-parametric signal detection in particle physics with classifiers decorrelated via optimal transport
- Authors: Purvasha Chakravarti, Lucas Kania, Olaf Behnke, Mikael Kuusela, Larry Wasserman,
- Abstract summary: In particle physics, a supervised classifier is used to separate a signal model from the known Standard Model physics.
But errors in the background model might adversely affect the signal detection procedure.
This paper shows how to use the (possibly misspecified) classifier only to perform a preliminary signal-enrichment step.
We then carry out a bump hunt on the signal-rich sample using only the real experimental data.
- Score: 0.20971479389679337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Searches of new signals in particle physics are usually done by training a supervised classifier to separate a signal model from the known Standard Model physics (also called the background model). However, even when the signal model is correct, systematic errors in the background model can influence supervised classifiers and might adversely affect the signal detection procedure. To tackle this problem, one approach is to use the (possibly misspecified) classifier only to perform a preliminary signal-enrichment step and then to carry out a bump hunt on the signal-rich sample using only the real experimental data. For this procedure to work, we need a classifier constrained to be decorrelated with one or more protected variables used for the signal detection step. We do this by considering an optimal transport map of the classifier output that makes it independent of the protected variable(s) for the background. We then fit a semi-parametric mixture model to the distribution of the protected variable after making cuts on the transformed classifier to detect the presence of a signal. We compare and contrast this decorrelation method with previous approaches, show that the decorrelation procedure is robust to moderate background misspecification, and analyse the power of the signal detection test as a function of the cut on the classifier.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Residual ANODE [0.0]
We present R-ANODE, a new method for data-driven, model-agnostic resonant anomaly detection.
The key to R-ANODE is to enhance the inductive bias of the anomaly detection task by fitting a normalizing flow directly to the small and unknown signal component.
We show that the method works equally well whether the unknown signal fraction is learned or fixed, and is even robust to signal fraction misspecification.
arXiv Detail & Related papers (2023-12-18T19:00:03Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Adaptive filters for the moving target indicator system [10.152838128195468]
Two approaches to improve the convergence of adaptive algorithms are presented.
The proposed approach is based on an empirical signal to interference plus noise ratio (SINR)
Its effectiveness is demonstrated using simulated data.
arXiv Detail & Related papers (2020-12-31T04:22:55Z) - Iterative Correction of Sensor Degradation and a Bayesian Multi-Sensor
Data Fusion Method [0.0]
We present a novel method for inferring ground-truth signal from degraded signals.
The algorithm learns a multiplicative degradation effect by performing iterative corrections of two signals.
We include theoretical analysis and prove convergence to the ground-truth signal for the noiseless measurement model.
arXiv Detail & Related papers (2020-09-07T13:24:47Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.