In Flight Boresight Rectification for Lightweight Airborne Pushbroom Imaging Spectrometry
- URL: http://arxiv.org/abs/2409.06520v1
- Date: Tue, 10 Sep 2024 13:55:47 GMT
- Title: In Flight Boresight Rectification for Lightweight Airborne Pushbroom Imaging Spectrometry
- Authors: Julien Yuuki Burkhard, Jesse Ray Murray Lahaye, Laurent Valentin Jospin, Jan Skaloud,
- Abstract summary: Many hyperspectral sensors use a linear array or 'push-broom' scanning design.
We propose a method for tie point extraction and camera calibration for 'push-broom' hyperspectral sensors.
We demonstrate that our approach allows for the automatic calibration of airborne systems with hyperspectral cameras.
- Score: 1.5624421399300306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral cameras have recently been miniaturized for operation on lightweight airborne platforms such as UAV or small aircraft. Unlike frame cameras (RGB or Multispectral), many hyperspectral sensors use a linear array or 'push-broom' scanning design. This design presents significant challenges for image rectification and the calibration of the intrinsic and extrinsic camera parameters. Typically, methods employed to address such tasks rely on a precise GPS/INS estimate of the airborne platform trajectory and a detailed terrain model. However, inaccuracies in the trajectory or surface model information can introduce systematic errors and complicate geometric modeling which ultimately degrade the quality of the rectification. To overcome these challenges, we propose a method for tie point extraction and camera calibration for 'push-broom' hyperspectral sensors using only the raw spectral imagery and raw, possibly low quality, GPS/INS trajectory. We demonstrate that our approach allows for the automatic calibration of airborne systems with hyperspectral cameras, outperforms other state-of-the-art automatic rectification methods and reaches an accuracy on par with manual calibration methods.
Related papers
- Accurate Pose Estimation for Flight Platforms based on Divergent Multi-Aperture Imaging System [8.98211713131741]
Vision-based pose estimation plays a crucial role in the autonomous navigation of flight platforms.
Field of view and spatial resolution of the camera limit pose estimation accuracy.
This paper designs a divergent multi-aperture imaging system to achieve simultaneous observation of a large field of view and high spatial resolution.
arXiv Detail & Related papers (2025-02-27T02:51:09Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - E-Calib: A Fast, Robust and Accurate Calibration Toolbox for Event Cameras [18.54225086007182]
We present E-Calib, a novel, fast, robust, and accurate calibration toolbox for event cameras.
The proposed method is tested in a variety of rigorous experiments for different event camera models.
arXiv Detail & Related papers (2023-06-15T12:16:38Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Online Camera-to-ground Calibration for Autonomous Driving [26.357898919134833]
We propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving.
We provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results.
arXiv Detail & Related papers (2023-03-30T04:01:48Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
We present an extrinsic camera calibration approach that automatizes the parameter estimation by utilizing semantic segmentation information.
Our approach relies on a coarse initial measurement of the camera pose and builds on lidar sensors mounted on a vehicle.
We evaluate our method on simulated and real-world data to demonstrate low error measurements in the calibration results.
arXiv Detail & Related papers (2022-08-08T07:25:03Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z) - CRLF: Automatic Calibration and Refinement based on Line Feature for
LiDAR and Camera in Road Scenes [16.201111055979453]
We propose a novel method to calibrate the extrinsic parameter for LiDAR and camera in road scenes.
Our method introduces line features from static straight-line-shaped objects such as road lanes and poles in both image and point cloud.
We conduct extensive experiments on KITTI and our in-house dataset, quantitative and qualitative results demonstrate the robustness and accuracy of our method.
arXiv Detail & Related papers (2021-03-08T06:02:44Z) - ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State
LiDAR and Camera Systems [11.787271829250805]
Solid-State LiDAR (SSL) enables low-cost and efficient obtainment of 3D point clouds from the environment.
We propose a fully automatic calibration method for the non-repetitive scanning SSL and camera systems.
We evaluate the proposed method on different types of LiDAR and camera sensor combinations in real conditions.
arXiv Detail & Related papers (2020-11-17T09:11:28Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Redesigning SLAM for Arbitrary Multi-Camera Systems [51.81798192085111]
Adding more cameras to SLAM systems improves robustness and accuracy but complicates the design of the visual front-end significantly.
In this work, we aim at an adaptive SLAM system that works for arbitrary multi-camera setups.
We adapt a state-of-the-art visual-inertial odometry with these modifications, and experimental results show that the modified pipeline can adapt to a wide range of camera setups.
arXiv Detail & Related papers (2020-03-04T11:44:42Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
We propose a targetless and structureless camera-DAR calibration method.
Our method combines a closed-form solution with a structureless bundle where the coarse-to-fine approach does not require an initial adjustment on the temporal parameters.
We demonstrate the accuracy and robustness of the proposed method through both simulation and real data experiments.
arXiv Detail & Related papers (2020-01-17T07:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.