From LIMA to DeepLIMA: following a new path of interoperability
- URL: http://arxiv.org/abs/2409.06550v1
- Date: Tue, 10 Sep 2024 14:26:12 GMT
- Title: From LIMA to DeepLIMA: following a new path of interoperability
- Authors: Victor Bocharov, Romaric Besançon, Gaël de Chalendar, Olivier Ferret, Nasredine Semmar,
- Abstract summary: We describe the architecture of the LIMA framework and its recent evolution with the addition of new text analysis modules based on deep neural networks.
Models were trained for more than 60 languages on the Universal Dependencies 2.5 corpora, WikiNer corpora, and CoNLL-03 dataset.
This integration of ubiquitous Deep Learning Natural Language Processing models and the use of standard annotated collections can be viewed as a new path of interoperability.
- Score: 2.5764171991553795
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this article, we describe the architecture of the LIMA (Libre Multilingual Analyzer) framework and its recent evolution with the addition of new text analysis modules based on deep neural networks. We extended the functionality of LIMA in terms of the number of supported languages while preserving existing configurable architecture and the availability of previously developed rule-based and statistical analysis components. Models were trained for more than 60 languages on the Universal Dependencies 2.5 corpora, WikiNer corpora, and CoNLL-03 dataset. Universal Dependencies allowed us to increase the number of supported languages and to generate models that could be integrated into other platforms. This integration of ubiquitous Deep Learning Natural Language Processing models and the use of standard annotated collections using Universal Dependencies can be viewed as a new path of interoperability, through the normalization of models and data, that are complementary to a more standard technical interoperability, implemented in LIMA through services available in Docker containers on Docker Hub.
Related papers
- IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)
The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.
Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
arXiv Detail & Related papers (2024-08-23T08:10:13Z) - Language Portability Strategies for Open-domain Dialogue with Pre-trained Language Models from High to Low Resource Languages [1.7436854281619139]
We propose a study of linguistic portability strategies of large pre-trained language models (PLMs) used for open-domain dialogue systems.
In particular the target low-resource language (L_T) will be simulated with French, as it lacks of task-specific resources.
arXiv Detail & Related papers (2024-07-01T14:20:54Z) - CMULAB: An Open-Source Framework for Training and Deployment of Natural Language Processing Models [59.91221728187576]
This paper introduces the CMU Linguistic Linguistic Backend, an open-source framework that simplifies model deployment and continuous human-in-the-loop fine-tuning of NLP models.
CMULAB enables users to leverage the power of multilingual models to quickly adapt and extend existing tools for speech recognition, OCR, translation, and syntactic analysis to new languages.
arXiv Detail & Related papers (2024-04-03T02:21:46Z) - SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models [97.40590590880144]
We develop an extensive Multimodality Large Language Model (MLLM) series.
We assemble a comprehensive dataset covering publicly available resources in language, vision, and vision-language tasks.
We obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities.
arXiv Detail & Related papers (2024-02-08T18:59:48Z) - Language Models are Universal Embedders [48.12992614723464]
We show that pre-trained transformer decoders can embed universally when finetuned on limited English data.
Our models achieve competitive performance on different embedding tasks by minimal training data.
These results provide evidence of a promising path towards building powerful unified embedders.
arXiv Detail & Related papers (2023-10-12T11:25:46Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
We extend the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages.
Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals.
We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the Natural Language Understanding tasks of intent detection and slot labelling.
arXiv Detail & Related papers (2022-12-20T17:34:25Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
We present new benchmarks on evaluation code generation models: MBXP and Multilingual HumanEval, and MathQA-X.
These datasets cover over 10 programming languages.
We are able to assess the performance of code generation models in a multi-lingual fashion.
arXiv Detail & Related papers (2022-10-26T17:17:06Z) - On the Universality of Deep COntextual Language Models [15.218264849664715]
Deep Contextual Language Models (LMs) like ELMO, BERT, and their successors dominate the landscape of Natural Language Processing.
Multilingual versions of such models like XLM-R and mBERT have given promising results in zero-shot cross-lingual transfer.
Due to this initial success, pre-trained models are being used as Universal Language Models'
arXiv Detail & Related papers (2021-09-15T08:00:33Z) - The Tatoeba Translation Challenge -- Realistic Data Sets for Low
Resource and Multilingual MT [0.0]
This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs.
The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages.
arXiv Detail & Related papers (2020-10-13T13:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.