論文の概要: A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
- arxiv url: http://arxiv.org/abs/2409.06560v1
- Date: Tue, 10 Sep 2024 14:43:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 17:11:29.999229
- Title: A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
- Title(参考訳): 物理インフォームド深部生成モデルにおける変分推論の一原理
- Authors: Alex Glyn-Davies, Arnaud Vadeboncoeur, O. Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami,
- Abstract要約: 変分推論(VI)は、近似ベイズ推論のための計算効率が高くスケーラブルな方法論である。
ベイズ正規化と柔軟性が組み込まれているため、生成モデリングと反転タスクが優れている。
本論文は,不確実性定量化を重視した物理学に基づく問題の解決を目指す,一般科学読者を対象としたものである。
- 参考スコア(独自算出の注目度): 3.885549098032255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational inference (VI) is a computationally efficient and scalable methodology for approximate Bayesian inference. It strikes a balance between accuracy of uncertainty quantification and practical tractability. It excels at generative modelling and inversion tasks due to its built-in Bayesian regularisation and flexibility, essential qualities for physics related problems. Deriving the central learning objective for VI must often be tailored to new learning tasks where the nature of the problems dictates the conditional dependence between variables of interest, such as arising in physics problems. In this paper, we provide an accessible and thorough technical introduction to VI for forward and inverse problems, guiding the reader through standard derivations of the VI framework and how it can best be realized through deep learning. We then review and unify recent literature exemplifying the creative flexibility allowed by VI. This paper is designed for a general scientific audience looking to solve physics-based problems with an emphasis on uncertainty quantification.
- Abstract(参考訳): 変分推論(VI)は、近似ベイズ推論のための計算効率が高くスケーラブルな方法論である。
不確実性定量化の精度と実用的なトラクタビリティのバランスをとる。
ベイズ正規化と柔軟性が備わっているため、生成的モデリングや逆転のタスクが優れている。
VIの中央学習目的の導出は、物理学的な問題など、興味のある変数間の条件依存を規定する新しい学習課題に合わせる必要がある。
本稿では,VIフレームワークの標準導出による読者の指導と,それをディープラーニングによって最もよく実現できる方法について述べる。
次に、VIが持つ創造的柔軟性を実証する最近の文献をレビューし、統一する。
本論文は,不確実性定量化を重視した物理学に基づく問題の解決を目指す,一般科学読者を対象としたものである。
関連論文リスト
- Learning Physics-Consistent Material Behavior Without Prior Knowledge [6.691537914484337]
我々は,畳み込み入力ニューラルネットワーク(ICNN)を代理モデルとして使用することにより,制約を克服するuLEDと呼ばれる機械学習アプローチを導入する。
我々は、ノイズのかなりのレベルに対して頑健であり、データ解像度の増大とともに基礎的な真実に収束することを実証した。
論文 参考訳(メタデータ) (2024-07-25T08:24:04Z) - DPA-WNO: A gray box model for a class of stochastic mechanics problem [1.0878040851638]
我々は、新しい微分可能物理拡張ウェーブレットニューラル演算子(DPA-WNO)を提案する。
提案したDPA-WNOは、異なる物理解法とウェーブレットニューラル演算子(WNO)をブレンドし、WNOの役割は、欠落した物理をモデル化することである。
これにより、WNOがデータから学習する能力を活用するとともに、物理ベースの解法に関連する解釈可能性や一般化可能性を維持することができる。
論文 参考訳(メタデータ) (2023-09-24T11:15:06Z) - Causal Deep Learning [77.49632479298745]
因果性は、現実世界の問題を解決する方法を変える可能性がある。
しかし因果関係は、実際にテストできない重要な仮定を必要とすることが多い。
我々は、因果性に関する新しい考え方を提案します。
論文 参考訳(メタデータ) (2023-03-03T19:19:18Z) - Bayesian Learning for Dynamic Inference [2.2843885788439793]
いくつかの逐次推定問題では、推定される量の将来値は、その現在の値の推定に依存する。
本研究では,未知量生成モデルがランダムに描画されることを前提として,動的推論のためのベイズ学習問題を定式化する。
我々は、推論損失を最小限に抑えるために、オフラインとオンラインの両方で最適なベイズ学習ルールを導出する。
論文 参考訳(メタデータ) (2022-12-30T19:16:23Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Variational Inference with Holder Bounds [68.8008396694788]
熱力学的変動目標(TVO)の慎重に分析する。
熱力学曲線の病理幾何学がTVOにどのように悪影響を及ぼすかを明らかにする。
これは、ホルダー境界と呼ばれ、熱力学曲線を平坦化し、正確な辺辺対の1ステップ近似を達成することを約束する新しいVI目標を動機付けている。
論文 参考訳(メタデータ) (2021-11-04T15:35:47Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
学習は現代の情報処理の中核技術になっているが、バイアス、安全でない、偏見のあるソリューションにつながるという証拠はたくさんある。
論文 参考訳(メタデータ) (2021-03-08T23:10:33Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
推論は変数の関係を理解し、物理的に解釈可能なモデルを導出することを意味する。
機械学習モデルだけでも優れた近似器であるが、物理学の最も基本的な法則を尊重しないことが多い。
これは、地球系の知識を発見できるアルゴリズムを開発し、適用するための、長期的なAIの集合的なアジェンダである。
論文 参考訳(メタデータ) (2020-10-18T16:58:20Z) - Variational Autoencoding of PDE Inverse Problems [12.716429755564821]
現代の機械学習は、事前の知識と物理法則に関わる問題を回避できる。
この作業では、メカニスティックモデルをフレキシブルなデータ駆動サロゲートに折り畳み、物理的に構造化されたデコーダネットワークに到達する。
我々はPDE問題の変分形式を採用し,局所近似をモデルベースデータ拡張の形式として導入する。
論文 参考訳(メタデータ) (2020-06-28T16:17:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。