Simulation-based Scenario Generation for Robust Hybrid AI for Autonomy
- URL: http://arxiv.org/abs/2409.06608v1
- Date: Tue, 10 Sep 2024 16:00:26 GMT
- Title: Simulation-based Scenario Generation for Robust Hybrid AI for Autonomy
- Authors: Hambisa Keno, Nicholas J. Pioch, Christopher Guagliano, Timothy H. Chung,
- Abstract summary: HAMERITT is a simulation-based autonomy software framework.
It supports the training, testing and assurance of neuro-symbolic algorithms for autonomous maneuver and perception reasoning.
- Score: 0.12499537119440242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Application of Unmanned Aerial Vehicles (UAVs) in search and rescue, emergency management, and law enforcement has gained traction with the advent of low-cost platforms and sensor payloads. The emergence of hybrid neural and symbolic AI approaches for complex reasoning is expected to further push the boundaries of these applications with decreasing levels of human intervention. However, current UAV simulation environments lack semantic context suited to this hybrid approach. To address this gap, HAMERITT (Hybrid Ai Mission Environment for RapId Training and Testing) provides a simulation-based autonomy software framework that supports the training, testing and assurance of neuro-symbolic algorithms for autonomous maneuver and perception reasoning. HAMERITT includes scenario generation capabilities that offer mission-relevant contextual symbolic information in addition to raw sensor data. Scenarios include symbolic descriptions for entities of interest and their relations to scene elements, as well as spatial-temporal constraints in the form of time-bounded areas of interest with prior probabilities and restricted zones within those areas. HAMERITT also features support for training distinct algorithm threads for maneuver vs. perception within an end-to-end mission run. Future work includes improving scenario realism and scaling symbolic context generation through automated workflow.
Related papers
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction [4.640835690336652]
We present ContextVAE, a context-aware approach for multi-modal vehicle trajectory prediction.
Our approach takes into account both the social features exhibited by agents on the scene and the physical environment constraints.
In all tested datasets, ContextVAE models are fast to train and provide high-quality multi-modal predictions in real-time.
arXiv Detail & Related papers (2023-02-21T18:42:24Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
We study the joint trajectory prediction problem with the goal-conditioned framework.
We introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space.
We propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels.
arXiv Detail & Related papers (2022-03-28T21:41:21Z) - HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and
Sensing [1.3678064890824186]
The Human Assisted Robotic Planning and Sensing (HARPS) framework is presented for active semantic sensing and planning in human-robot teams.
This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments.
Simulations of a UAV-enabled target search application in a large-scale partially structured environment show significant improvements in time and belief state estimates.
arXiv Detail & Related papers (2021-10-20T00:41:57Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Zero-Shot Reinforcement Learning on Graphs for Autonomous Exploration
Under Uncertainty [6.42522897323111]
We present a framework for self-learning a high-performance exploration policy in a single simulation environment.
We propose a novel approach that uses graph neural networks in conjunction with deep reinforcement learning.
arXiv Detail & Related papers (2021-05-11T02:42:17Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Exploring Dynamic Context for Multi-path Trajectory Prediction [33.66335553588001]
We propose a novel framework, named Dynamic Context Network (DCENet)
In our framework, the spatial context between agents is explored by using self-attention architectures.
A set of future trajectories for each agent is predicted conditioned on the learned spatial-temporal context.
arXiv Detail & Related papers (2020-10-30T13:39:20Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.