Scalable Multivariate Fronthaul Quantization for Cell-Free Massive MIMO
- URL: http://arxiv.org/abs/2409.06715v1
- Date: Mon, 26 Aug 2024 12:56:41 GMT
- Title: Scalable Multivariate Fronthaul Quantization for Cell-Free Massive MIMO
- Authors: Sangwoo Park, Ahmet Hasim Gokceoglu, Li Wang, Osvaldo Simeone,
- Abstract summary: This work sets out to design scalable MQ strategies for PC-based cell-free massive MIMO systems.
For the low-fronthaul capacity regime, we present alpha-parallel MQ (alpha-PMQ), whose complexity is exponential only in the fronthaul capacity towards an individual RU.
For the high-fronthaul capacity regime, we then introduce neural MQ, which replaces the exhaustive search in MQ with gradient-based updates for a neural-network-based decoder.
- Score: 36.0373787740205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The conventional approach to the fronthaul design for cell-free massive MIMO system follows the compress-and-precode (CP) paradigm. Accordingly, encoded bits and precoding coefficients are shared by the distributed unit (DU) on the fronthaul links, and precoding takes place at the radio units (RUs). Previous theoretical work has shown that CP can be potentially improved by a significant margin by precode-and-compress (PC) methods, in which all baseband processing is carried out at the DU, which compresses the precoded signals for transmission on the fronthaul links. The theoretical performance gain of PC methods are particularly pronounced when the DU implements multivariate quantization (MQ), applying joint quantization across the signals for all the RUs. However, existing solutions for MQ are characterized by a computational complexity that grows exponentially with the sum-fronthaul capacity from the DU to all RUs. This work sets out to design scalable MQ strategies for PC-based cell-free massive MIMO systems. For the low-fronthaul capacity regime, we present alpha-parallel MQ (alpha-PMQ), whose complexity is exponential only in the fronthaul capacity towards an individual RU, while performing close to full MQ. alpha-PMQ tailors MQ to the topology of the network by allowing for parallel local quantization steps for RUs that do not interfere too much with each other. For the high-fronthaul capacity regime, we then introduce neural MQ, which replaces the exhaustive search in MQ with gradient-based updates for a neural-network-based decoder, attaining a complexity that grows linearly with the sum-fronthaul capacity. Numerical results demonstrate that the proposed scalable MQ strategies outperform CP for both the low and high-fronthaul capacity regimes at the cost of increased computational complexity at the DU (but not at the RUs).
Related papers
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach [6.347685922582191]
We introduce a novel compiler that prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs.
We present a real-time, adaptive approach to compiler design, accounting for the nature of entanglement generation and the operational demands of quantum circuits.
Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler.
arXiv Detail & Related papers (2024-04-25T23:03:20Z) - High-rate discretely-modulated continuous-variable quantum key
distribution using quantum machine learning [4.236937886028215]
We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies.
A low-complexity quantum k-nearest neighbor (QkNN) is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side.
Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols.
arXiv Detail & Related papers (2023-08-07T04:00:13Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes.
To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication.
arXiv Detail & Related papers (2022-10-07T15:39:11Z) - SDQ: Stochastic Differentiable Quantization with Mixed Precision [46.232003346732064]
We present a novel Differentiable Quantization (SDQ) method that can automatically learn the MPQ strategy.
After the optimal MPQ strategy is acquired, we train our network with entropy-aware bin regularization and knowledge distillation.
SDQ outperforms all state-of-the-art mixed datasets or single precision quantization with a lower bitwidth.
arXiv Detail & Related papers (2022-06-09T12:38:18Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Towards Efficient Post-training Quantization of Pre-trained Language
Models [85.68317334241287]
We study post-training quantization(PTQ) of PLMs, and propose module-wise quantization error minimization(MREM), an efficient solution to mitigate these issues.
Experiments on GLUE and SQuAD benchmarks show that our proposed PTQ solution not only performs close to QAT, but also enjoys significant reductions in training time, memory overhead, and data consumption.
arXiv Detail & Related papers (2021-09-30T12:50:06Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.