Generative Hierarchical Materials Search
- URL: http://arxiv.org/abs/2409.06762v1
- Date: Tue, 10 Sep 2024 17:51:28 GMT
- Title: Generative Hierarchical Materials Search
- Authors: Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow, Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, Ekin D. Cubuk,
- Abstract summary: We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
- Score: 91.93125016916463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models trained at scale can now produce text, video, and more recently, scientific data such as crystal structures. In applications of generative approaches to materials science, and in particular to crystal structures, the guidance from the domain expert in the form of high-level instructions can be essential for an automated system to output candidate crystals that are viable for downstream research. In this work, we formulate end-to-end language-to-structure generation as a multi-objective optimization problem, and propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures. GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal (e.g., chemical formulae), and (2) a diffusion model that takes intermediate information as input and generates low-level continuous value crystal structures. GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures. During inference, GenMS leverages all three components to conduct a forward tree search over the space of possible structures. Experiments show that GenMS outperforms other alternatives of directly using language models to generate structures both in satisfying user request and in generating low-energy structures. We confirm that GenMS is able to generate common crystal structures such as double perovskites, or spinels, solely from natural language input, and hence can form the foundation for more complex structure generation in near future.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
New inorganic materials with promising properties pose a critical challenge, both scientifically and for industrial applications.
Discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications.
In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture.
arXiv Detail & Related papers (2024-06-13T16:03:15Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - CrysMMNet: Multimodal Representation for Crystal Property Prediction [22.576167897068956]
We propose CrysMMNet, a simple multi-modal framework, which fuses both structural and textual representation together to generate a joint multimodal representation of crystalline materials.
We conduct extensive experiments on two benchmark datasets across ten different properties to show that CrysMMNet outperforms existing state-of-the-art baseline methods with a good margin.
arXiv Detail & Related papers (2023-06-09T11:16:01Z) - Grokking of Hierarchical Structure in Vanilla Transformers [72.45375959893218]
We show that transformer language models can learn to generalize hierarchically after training for extremely long periods.
intermediate-depth models generalize better than both very deep and very shallow transformers.
arXiv Detail & Related papers (2023-05-30T04:34:13Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
We apply a statistical tool, model criticism in latent space, to evaluate the high-level structure of generated text.
We perform experiments on three representative aspects of high-level discourse -- coherence, coreference, and topicality.
We find that transformer-based language models are able to capture topical structures but have a harder time maintaining structural coherence or modeling coreference.
arXiv Detail & Related papers (2022-10-16T04:35:58Z) - Physics guided deep learning generative models for crystal materials
discovery [7.7755483163557155]
Deep learning based generative models such as deepfake have been able to generate amazing images and videos.
Here we show that by exploiting and adding physically oriented data augmentation, our deep adversarial network (GAN) based generative models can now generate crystal structures with higher physical feasibility.
arXiv Detail & Related papers (2021-12-07T06:54:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.