Physics guided deep learning generative models for crystal materials
discovery
- URL: http://arxiv.org/abs/2112.03528v1
- Date: Tue, 7 Dec 2021 06:54:48 GMT
- Title: Physics guided deep learning generative models for crystal materials
discovery
- Authors: Yong Zhao, Edirisuriya MD Siriwardane, Jianjun Hu
- Abstract summary: Deep learning based generative models such as deepfake have been able to generate amazing images and videos.
Here we show that by exploiting and adding physically oriented data augmentation, our deep adversarial network (GAN) based generative models can now generate crystal structures with higher physical feasibility.
- Score: 7.7755483163557155
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning based generative models such as deepfake have been able to
generate amazing images and videos. However, these models may need significant
transformation when applied to generate crystal materials structures in which
the building blocks, the physical atoms are very different from the pixels.
Naively transferred generative models tend to generate a large portion of
physically infeasible crystal structures that are not stable or synthesizable.
Herein we show that by exploiting and adding physically oriented data
augmentation, loss function terms, and post processing, our deep adversarial
network (GAN) based generative models can now generate crystal structures with
higher physical feasibility and expand our previous models which can only
create cubic structures.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers [1.2289361708127877]
New inorganic materials with promising properties pose a critical challenge, both scientifically and for industrial applications.
Discovery of new inorganic materials with promising properties poses a critical challenge, both scientifically and for industrial applications.
In this study, we explore a new type of diffusion model for the generative inverse design of crystal structures, with a backbone based on a Transformer architecture.
arXiv Detail & Related papers (2024-06-13T16:03:15Z) - Generative Design of Crystal Structures by Point Cloud Representations and Diffusion Model [9.011625935805927]
We present a framework for the generation of synthesizable materials, leveraging a point cloud representation to encode structural information.
Our research stands as a noteworthy contribution to the advancement of materials design and synthesis.
arXiv Detail & Related papers (2024-01-24T02:36:52Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - Evaluating the diversity and utility of materials proposed by generative
models [38.85523285991743]
We show how one state-of-the-art generative model, the physics-guided crystal generation model, can be used as part of the inverse design process.
Our findings suggest how generative models might be improved to enable better inverse design.
arXiv Detail & Related papers (2023-08-09T14:42:08Z) - Unified Model for Crystalline Material Generation [9.940728137241214]
We propose two unified models that act at the same time on crystal lattice and atomic positions.
Our models are capable to learn any arbitrary crystal lattice deformation by lowering the total energy to reach thermodynamic stability.
arXiv Detail & Related papers (2023-06-07T15:23:59Z) - Generative Deformable Radiance Fields for Disentangled Image Synthesis
of Topology-Varying Objects [52.46838926521572]
3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from a collection of monocular 2D images.
We propose a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance variations.
arXiv Detail & Related papers (2022-09-09T08:44:06Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.