Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI
- URL: http://arxiv.org/abs/2409.06800v1
- Date: Tue, 10 Sep 2024 18:11:48 GMT
- Title: Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI
- Authors: Michele Laurelli,
- Abstract summary: AMDTL aims to address the main challenges of transfer learning, such as domain misalignment, negative transfer, and catastrophic forgetting.
The framework integrates a meta-learner trained on a diverse distribution of tasks, adversarial training techniques for aligning domain feature distributions, and dynamic feature regulation mechanisms.
Experimental results on benchmark datasets demonstrate that AMDTL outperforms existing transfer learning methodologies in terms of accuracy, adaptation efficiency, and robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents Adaptive Meta-Domain Transfer Learning (AMDTL), a novel methodology that combines principles of meta-learning with domain-specific adaptations to enhance the transferability of artificial intelligence models across diverse and unknown domains. AMDTL aims to address the main challenges of transfer learning, such as domain misalignment, negative transfer, and catastrophic forgetting, through a hybrid framework that emphasizes both generalization and contextual specialization. The framework integrates a meta-learner trained on a diverse distribution of tasks, adversarial training techniques for aligning domain feature distributions, and dynamic feature regulation mechanisms based on contextual domain embeddings. Experimental results on benchmark datasets demonstrate that AMDTL outperforms existing transfer learning methodologies in terms of accuracy, adaptation efficiency, and robustness. This research provides a solid theoretical and practical foundation for the application of AMDTL in various fields, opening new perspectives for the development of more adaptable and inclusive AI systems.
Related papers
- MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition [11.252832459891566]
We propose a novel non-deep transfer learning method, termed as Manifold-based Domain adaptation with Dynamic Distribution (MDDD)
The experimental results indicate that MDDD outperforms traditional non-deep learning methods, achieving an average improvement of 3.54%.
This suggests that MDDD could be a promising method for enhancing the utility and applicability of aBCIs in real-world scenarios.
arXiv Detail & Related papers (2024-04-24T03:08:25Z) - Domain Generalization through Meta-Learning: A Survey [6.524870790082051]
Deep neural networks (DNNs) have revolutionized artificial intelligence but often lack performance when faced with out-of-distribution (OOD) data.
This survey paper delves into the realm of meta-learning with a focus on its contribution to domain generalization.
arXiv Detail & Related papers (2024-04-03T14:55:17Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
EEG signals manifest subject instability in subject-agnostic affective Brain-computer interfaces (aBCIs)
We propose a novel framework, meta-learning based augmented domain adaptation for subject-agnostic aBCIs.
Our proposed approach is shown to be effective in experiments on a public aBICs dataset.
arXiv Detail & Related papers (2023-10-20T23:44:34Z) - Taxonomy Adaptive Cross-Domain Adaptation in Medical Imaging via
Optimization Trajectory Distillation [73.83178465971552]
The success of automated medical image analysis depends on large-scale and expert-annotated training sets.
Unsupervised domain adaptation (UDA) has been raised as a promising approach to alleviate the burden of labeled data collection.
We propose optimization trajectory distillation, a unified approach to address the two technical challenges from a new perspective.
arXiv Detail & Related papers (2023-07-27T08:58:05Z) - Interpretations of Domain Adaptations via Layer Variational Analysis [10.32456826351215]
This study establishes both formal derivations and analysis to formulate the theory of transfer learning in deep learning.
Our framework utilizing layer variational analysis proves that the success of transfer learning can be guaranteed with corresponding data conditions.
Our theoretical calculation yields intuitive interpretations towards the knowledge transfer process.
arXiv Detail & Related papers (2023-02-03T15:10:17Z) - Multi-level Consistency Learning for Semi-supervised Domain Adaptation [85.90600060675632]
Semi-supervised domain adaptation (SSDA) aims to apply knowledge learned from a fully labeled source domain to a scarcely labeled target domain.
We propose a Multi-level Consistency Learning framework for SSDA.
arXiv Detail & Related papers (2022-05-09T06:41:18Z) - Heterogeneous Domain Adaptation with Adversarial Neural Representation
Learning: Experiments on E-Commerce and Cybersecurity [7.748670137746999]
Heterogeneous Adversarial Neural Domain Adaptation (HANDA) is designed to maximize the transferability in heterogeneous environments.
Three experiments were conducted to evaluate the performance against the state-of-the-art HDA methods on major image and text e-commerce benchmarks.
arXiv Detail & Related papers (2022-05-05T16:57:36Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
Unsupervised domain adaptation is used in many machine learning applications where, during training, a model has access to unlabeled data in the target domain.
We derive a novel generalization bound for domain adaptation that exploits a new measure of discrepancy between distributions based on a variational characterization of f-divergences.
arXiv Detail & Related papers (2021-06-21T18:21:09Z) - Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection [50.29565896287595]
We apply transfer learning to exploit common datasets for sarcasm detection.
We propose a generalized latent optimization strategy that allows different losses to accommodate each other.
In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.
arXiv Detail & Related papers (2021-04-19T13:07:52Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
We propose a novel two-stage learning process for domain adaptation.
In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift.
In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps.
arXiv Detail & Related papers (2020-04-09T07:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.