MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition
- URL: http://arxiv.org/abs/2404.15615v1
- Date: Wed, 24 Apr 2024 03:08:25 GMT
- Title: MDDD: Manifold-based Domain Adaptation with Dynamic Distribution for Non-Deep Transfer Learning in Cross-subject and Cross-session EEG-based Emotion Recognition
- Authors: Ting Luo, Jing Zhang, Yingwei Qiu, Li Zhang, Yaohua Hu, Zhuliang Yu, Zhen Liang,
- Abstract summary: We propose a novel non-deep transfer learning method, termed as Manifold-based Domain adaptation with Dynamic Distribution (MDDD)
The experimental results indicate that MDDD outperforms traditional non-deep learning methods, achieving an average improvement of 3.54%.
This suggests that MDDD could be a promising method for enhancing the utility and applicability of aBCIs in real-world scenarios.
- Score: 11.252832459891566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion decoding using Electroencephalography (EEG)-based affective brain-computer interfaces represents a significant area within the field of affective computing. In the present study, we propose a novel non-deep transfer learning method, termed as Manifold-based Domain adaptation with Dynamic Distribution (MDDD). The proposed MDDD includes four main modules: manifold feature transformation, dynamic distribution alignment, classifier learning, and ensemble learning. The data undergoes a transformation onto an optimal Grassmann manifold space, enabling dynamic alignment of the source and target domains. This process prioritizes both marginal and conditional distributions according to their significance, ensuring enhanced adaptation efficiency across various types of data. In the classifier learning, the principle of structural risk minimization is integrated to develop robust classification models. This is complemented by dynamic distribution alignment, which refines the classifier iteratively. Additionally, the ensemble learning module aggregates the classifiers obtained at different stages of the optimization process, which leverages the diversity of the classifiers to enhance the overall prediction accuracy. The experimental results indicate that MDDD outperforms traditional non-deep learning methods, achieving an average improvement of 3.54%, and is comparable to deep learning methods. This suggests that MDDD could be a promising method for enhancing the utility and applicability of aBCIs in real-world scenarios.
Related papers
- DAAL: Density-Aware Adaptive Line Margin Loss for Multi-Modal Deep Metric Learning [1.9472493183927981]
We propose a novel loss function called Density-Aware Adaptive Margin Loss (DAAL)
DAAL preserves the density distribution of embeddings while encouraging the formation of adaptive sub-clusters within each class.
Experiments on benchmark fine-grained datasets demonstrate the superior performance of DAAL.
arXiv Detail & Related papers (2024-10-07T19:04:24Z) - Adaptive Meta-Domain Transfer Learning (AMDTL): A Novel Approach for Knowledge Transfer in AI [0.0]
AMDTL aims to address the main challenges of transfer learning, such as domain misalignment, negative transfer, and catastrophic forgetting.
The framework integrates a meta-learner trained on a diverse distribution of tasks, adversarial training techniques for aligning domain feature distributions, and dynamic feature regulation mechanisms.
Experimental results on benchmark datasets demonstrate that AMDTL outperforms existing transfer learning methodologies in terms of accuracy, adaptation efficiency, and robustness.
arXiv Detail & Related papers (2024-09-10T18:11:48Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
EEG signals manifest subject instability in subject-agnostic affective Brain-computer interfaces (aBCIs)
We propose a novel framework, meta-learning based augmented domain adaptation for subject-agnostic aBCIs.
Our proposed approach is shown to be effective in experiments on a public aBICs dataset.
arXiv Detail & Related papers (2023-10-20T23:44:34Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model.
In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn.
AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.
arXiv Detail & Related papers (2022-10-25T18:51:51Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.