Cross-Modal Self-Supervised Learning with Effective Contrastive Units for LiDAR Point Clouds
- URL: http://arxiv.org/abs/2409.06827v1
- Date: Tue, 10 Sep 2024 19:11:45 GMT
- Title: Cross-Modal Self-Supervised Learning with Effective Contrastive Units for LiDAR Point Clouds
- Authors: Mu Cai, Chenxu Luo, Yong Jae Lee, Xiaodong Yang,
- Abstract summary: 3D perception in LiDAR point clouds is crucial for a self-driving vehicle to properly act in 3D environment.
There has been a growing interest in self-supervised pre-training of 3D perception models.
We propose the instance-aware and similarity-balanced contrastive units that are tailored for self-driving point clouds.
- Score: 34.99995524090838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D perception in LiDAR point clouds is crucial for a self-driving vehicle to properly act in 3D environment. However, manually labeling point clouds is hard and costly. There has been a growing interest in self-supervised pre-training of 3D perception models. Following the success of contrastive learning in images, current methods mostly conduct contrastive pre-training on point clouds only. Yet an autonomous driving vehicle is typically supplied with multiple sensors including cameras and LiDAR. In this context, we systematically study single modality, cross-modality, and multi-modality for contrastive learning of point clouds, and show that cross-modality wins over other alternatives. In addition, considering the huge difference between the training sources in 2D images and 3D point clouds, it remains unclear how to design more effective contrastive units for LiDAR. We therefore propose the instance-aware and similarity-balanced contrastive units that are tailored for self-driving point clouds. Extensive experiments reveal that our approach achieves remarkable performance gains over various point cloud models across the downstream perception tasks of LiDAR based 3D object detection and 3D semantic segmentation on the four popular benchmarks including Waymo Open Dataset, nuScenes, SemanticKITTI and ONCE.
Related papers
- GS-PT: Exploiting 3D Gaussian Splatting for Comprehensive Point Cloud Understanding via Self-supervised Learning [15.559369116540097]
Self-supervised learning of point cloud aims to leverage unlabeled 3D data to learn meaningful representations without reliance on manual annotations.
We propose GS-PT, which integrates 3D Gaussian Splatting (3DGS) into point cloud self-supervised learning for the first time.
Our pipeline utilizes transformers as the backbone for self-supervised pre-training and introduces novel contrastive learning tasks through 3DGS.
arXiv Detail & Related papers (2024-09-08T03:46:47Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes.
We propose the learnable transformation alignment to bridge the domain gap between image and point cloud data.
We establish dense 2D-3D correspondences to estimate the rigid pose.
arXiv Detail & Related papers (2024-01-23T02:41:06Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data [80.14669385741202]
We propose a self-supervised pre-training method for 3D perception models tailored to autonomous driving data.
We leverage the availability of synchronized and calibrated image and Lidar sensors in autonomous driving setups.
Our method does not require any point cloud nor image annotations.
arXiv Detail & Related papers (2022-03-30T12:40:30Z) - LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods in both tasks.
We extend DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance clustering on aligned LiDAR frames.
arXiv Detail & Related papers (2022-03-14T15:25:42Z) - PillarGrid: Deep Learning-based Cooperative Perception for 3D Object
Detection from Onboard-Roadside LiDAR [15.195933965761645]
We propose textitPillarGrid, a novel cooperative perception method fusing information from multiple 3D LiDARs.
PillarGrid consists of four main phases: 1) cooperative preprocessing of point clouds, 2) pillar-wise voxelization and feature extraction, 3) grid-wise deep fusion of features from multiple sensors, and 4) convolutional neural network (CNN)-based augmented 3D object detection.
Extensive experimentation shows that PillarGrid outperforms the SOTA single-LiDAR-based 3D object detection methods with respect to both accuracy and range by a large margin.
arXiv Detail & Related papers (2022-03-12T02:28:41Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPoint is a simple cross-modal contrastive learning approach to learn transferable 3D point cloud representations.
Our approach outperforms the previous unsupervised learning methods on a diverse range of downstream tasks including 3D object classification and segmentation.
arXiv Detail & Related papers (2022-03-01T18:59:01Z) - SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for
Spatial-Aware Visual Representations [85.38562724999898]
We propose a 2D Image and 3D Point cloud Unsupervised pre-training strategy, called SimIPU.
Specifically, we develop a multi-modal contrastive learning framework that consists of an intra-modal spatial perception module and an inter-modal feature interaction module.
To the best of our knowledge, this is the first study to explore contrastive learning pre-training strategies for outdoor multi-modal datasets.
arXiv Detail & Related papers (2021-12-09T03:27:00Z) - Multi-Frame to Single-Frame: Knowledge Distillation for 3D Object
Detection [36.238956089801825]
We use knowledge distillation to bridge the gap between a model trained on high-quality inputs at training time and another tested on low-quality inputs at inference time.
First, we train an object detection model on dense point clouds, which are generated from multiple frames using extra information only available at training time.
Then, we train the model's identical counterpart on sparse single-frame point clouds with consistency regularization on features from both models.
arXiv Detail & Related papers (2020-09-24T17:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.