Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
- URL: http://arxiv.org/abs/2409.06887v1
- Date: Tue, 10 Sep 2024 22:03:26 GMT
- Title: Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
- Authors: Xin Wang, Tao Tan, Yuan Gao, Eric Marcus, Luyi Han, Antonio Portaluri, Tianyu Zhang, Chunyao Lu, Xinglong Liang, Regina Beets-Tan, Jonas Teuwen, Ritse Mann,
- Abstract summary: Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks.
Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts.
- Score: 16.06975226476176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision breast cancer (BC) risk assessment is crucial for developing individualized screening and prevention. Despite the promising potential of recent mammogram (MG) based deep learning models in predicting BC risk, they mostly overlook the 'time-to-future-event' ordering among patients and exhibit limited explorations into how they track history changes in breast tissue, thereby limiting their clinical application. In this work, we propose a novel method, named OA-BreaCR, to precisely model the ordinal relationship of the time to and between BC events while incorporating longitudinal breast tissue changes in a more explainable manner. We validate our method on public EMBED and inhouse datasets, comparing with existing BC risk prediction and time prediction methods. Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks. Additionally, ordinal heatmap visualizations show the model's attention over time. Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts. The code will be accessible to the public.
Related papers
- xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer [10.515405477496735]
We present an explainable cell graph (xCG) approach for survival prediction.
We validate our model on a public cohort of imaging mass (IMC) data for 416 cases of lung adenocarcinoma.
arXiv Detail & Related papers (2024-11-12T08:53:49Z) - SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
We extend a state-of-the-art machine learning model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk.
Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk.
arXiv Detail & Related papers (2024-04-29T19:52:09Z) - Enhancing Breast Cancer Risk Prediction by Incorporating Prior Images [8.756888862171195]
We present a new method, PRIME+, for breast cancer risk prediction that leverages prior mammograms using a transformer decoder.
We validate our approach on a dataset with 16,113 exams and demonstrate that it effectively captures patterns of changes from prior mammograms.
Experimental results show that our model achieves a statistically significant improvement over the state-of-the-art based model, with a C-index increase from 0.68 to 0.73.
arXiv Detail & Related papers (2023-03-28T03:05:25Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - Individual dynamic prediction of clinical endpoint from large
dimensional longitudinal biomarker history: a landmark approach [0.0]
We propose a solution for the dynamic prediction of a health event that may exploit repeated measures of a possibly large number of markers.
Our methodology, implemented in R, enables the prediction of an event using the entire longitudinal patient history, even when the number of repeated markers is large.
arXiv Detail & Related papers (2021-02-02T12:36:18Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.