Optical Gottesman-Kitaev-Preskill Qubit Generation via Approximate Squeezed Schrödinger Cat State Breeding
- URL: http://arxiv.org/abs/2409.06902v1
- Date: Tue, 10 Sep 2024 22:57:47 GMT
- Title: Optical Gottesman-Kitaev-Preskill Qubit Generation via Approximate Squeezed Schrödinger Cat State Breeding
- Authors: Andrew J. Pizzimenti, Daniel Soh,
- Abstract summary: Gottesman-Kitaev-Preskill (GKP) qubits, known for their exceptional error-correction capabilities, are highly coveted in quantum computing.
Measurement based methods, where a portion of entangled squeezed vacuum modes are measured with photon number resolving detectors heralding a desired state in the undetected modes, have emerged as leading candidates for optical GKP qubit generation due their minimal resource requirements.
Our method, breeding approximate squeezed Schr"odinger cat states created by generalized photon subtraction, overcomes this problem by supplementing two photon number resolving measurements with a single high success probability homodyne measurement
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gottesman-Kitaev-Preskill (GKP) qubits, known for their exceptional error-correction capabilities, are highly coveted in quantum computing. However, generating optical GKP qubits has been a significant challenge. Measurement based methods, where a portion of entangled squeezed vacuum modes are measured with photon number resolving detectors heralding a desired state in the undetected modes, have emerged as leading candidates for optical GKP qubit generation due their minimal resource requirements. While the current measurement based methods can produce high quality GKP qubits, they suffer from low success probabilities limiting experimental realization. The heart of the problem lies in the duality of photon number resolving measurements, being both the source of nonlinearity needed to generate quality GKP qubits and the component driving down their probability of successful production. Our method, breeding approximate squeezed Schr\"odinger cat states created by generalized photon subtraction, overcomes this problem by supplementing two photon number resolving measurements with a single high success probability homodyne measurement. This scheme achieves success probabilities $\geq 10^{-5}$, two orders of magnitude higher than other measurement based methods, while still producing states with high-fidelity, possessing error-correction capabilities equivalent to up to a 10 dB squeezed GKP qubit. This breakthrough significantly advances the practical use of the optical GKP qubit encoding.
Related papers
- 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment.
It is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts.
We present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization.
arXiv Detail & Related papers (2024-06-10T06:06:11Z) - Generation of Flying Logical Qubits using Generalized Photon Subtraction
with Adaptive Gaussian Operations [0.0]
We propose a method to efficiently synthesize GKP qubits from several quantum states by adaptive Gaussian operations.
The single-shot success probability of generating fault-tolerant GKP qubits in a realistic scale system exceeds 10$%$, which is one million times better than previous methods.
arXiv Detail & Related papers (2024-01-14T13:42:12Z) - Deterministic preparation of optical squeezed cat and
Gottesman-Kitaev-Preskill states [0.0]
Large-amplitude squeezed cat and high-quality Gottesman-Kitaev-Preskill (GKP) states are powerful resources for quantum error correction.
We present scalable schemes in optics for the deterministic preparation of large-amplitude squeezed cat states.
These states can be bred to prepare high-quality approximate GKP states, showing that GKP error correction in optics is technically feasible in near-term experiments.
arXiv Detail & Related papers (2023-11-17T13:23:52Z) - Error-corrected quantum repeaters with GKP qudits [1.1279808969568252]
The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes.
The GKP code has found recent applications in theoretical investigations of quantum communication protocols.
arXiv Detail & Related papers (2023-03-28T15:04:06Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - All-optical Quantum State Engineering for Rotation-symmetric Bosonic
States [0.0]
We propose and analyze a method to generate a variety of non-Gaussian states using coherent photon subtraction.
Our method can be readily implemented with current quantum photonic technologies.
arXiv Detail & Related papers (2021-05-23T22:43:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.