FSMDet: Vision-guided feature diffusion for fully sparse 3D detector
- URL: http://arxiv.org/abs/2409.06945v1
- Date: Wed, 11 Sep 2024 01:55:45 GMT
- Title: FSMDet: Vision-guided feature diffusion for fully sparse 3D detector
- Authors: Tianran Liu, Morteza Mousa Pasandi, Robert Laganiere,
- Abstract summary: We propose FSMDet (Fully Sparse Multi-modal Detection), which use visual information to guide the LiDAR feature diffusion process.
Our method can be up to 5 times more efficient than previous SOTA methods in the inference process.
- Score: 0.8437187555622164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully sparse 3D detection has attracted an increasing interest in the recent years. However, the sparsity of the features in these frameworks challenges the generation of proposals because of the limited diffusion process. In addition, the quest for efficiency has led to only few work on vision-assisted fully sparse models. In this paper, we propose FSMDet (Fully Sparse Multi-modal Detection), which use visual information to guide the LiDAR feature diffusion process while still maintaining the efficiency of the pipeline. Specifically, most of fully sparse works focus on complex customized center fusion diffusion/regression operators. However, we observed that if the adequate object completion is performed, even the simplest interpolation operator leads to satisfactory results. Inspired by this observation, we split the vision-guided diffusion process into two modules: a Shape Recover Layer (SRLayer) and a Self Diffusion Layer (SDLayer). The former uses RGB information to recover the shape of the visible part of an object, and the latter uses a visual prior to further spread the features to the center region. Experiments demonstrate that our approach successfully improves the performance of previous fully sparse models that use LiDAR only and reaches SOTA performance in multimodal models. At the same time, thanks to the sparse architecture, our method can be up to 5 times more efficient than previous SOTA methods in the inference process.
Related papers
- FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.
Recent methods leverage the range-view representation to improve processing efficiency.
We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - DiHuR: Diffusion-Guided Generalizable Human Reconstruction [51.31232435994026]
We introduce DiHuR, a Diffusion-guided model for generalizable Human 3D Reconstruction and view synthesis from sparse, minimally overlapping images.
Our method integrates two key priors in a coherent manner: the prior from generalizable feed-forward models and the 2D diffusion prior, and it requires only multi-view image training, without 3D supervision.
arXiv Detail & Related papers (2024-11-16T03:52:23Z) - FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
We propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies.
We also design two Point Cloud Intensification ( PCI) strategies to compensate for the sparsity of point clouds.
We develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features.
arXiv Detail & Related papers (2024-07-14T09:39:44Z) - NeRF-DetS: Enhanced Adaptive Spatial-wise Sampling and View-wise Fusion Strategies for NeRF-based Indoor Multi-view 3D Object Detection [17.631688089207724]
In indoor scenes, the diverse distribution of object locations and scales makes the visual 3D perception task a big challenge.
Previous works have demonstrated that implicit representation has the capacity to benefit the visual 3D perception task.
We propose a simple yet effective method, NeRF-DetS, to address these issues.
arXiv Detail & Related papers (2024-04-22T06:59:03Z) - IPoD: Implicit Field Learning with Point Diffusion for Generalizable 3D Object Reconstruction from Single RGB-D Images [50.4538089115248]
Generalizable 3D object reconstruction from single-view RGB-D images remains a challenging task.
We propose a novel approach, IPoD, which harmonizes implicit field learning with point diffusion.
Experiments conducted on the CO3D-v2 dataset affirm the superiority of IPoD, achieving 7.8% improvement in F-score and 28.6% in Chamfer distance over existing methods.
arXiv Detail & Related papers (2024-03-30T07:17:37Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.