Neural Algorithmic Reasoning with Multiple Correct Solutions
- URL: http://arxiv.org/abs/2409.06953v2
- Date: Wed, 16 Oct 2024 17:56:20 GMT
- Title: Neural Algorithmic Reasoning with Multiple Correct Solutions
- Authors: Zeno Kujawa, John Poole, Dobrik Georgiev, Danilo Numeroso, Pietro LiĆ²,
- Abstract summary: In some applications, it is desirable to recover more than one correct solution.
We demonstrate our method on two classical algorithms: Bellman-Ford (BF) and Depth-First Search (DFS)
This method involves generating appropriate training data as well as sampling and validating solutions from model output.
- Score: 16.045068056647676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Algorithmic Reasoning (NAR) aims to optimize classical algorithms. However, canonical implementations of NAR train neural networks to return only a single solution, even when there are multiple correct solutions to a problem, such as single-source shortest paths. For some applications, it is desirable to recover more than one correct solution. To that end, we give the first method for NAR with multiple solutions. We demonstrate our method on two classical algorithms: Bellman-Ford (BF) and Depth-First Search (DFS), favouring deeper insight into two algorithms over a broader survey of algorithms. This method involves generating appropriate training data as well as sampling and validating solutions from model output. Each step of our method, which can serve as a framework for neural algorithmic reasoning beyond the tasks presented in this paper, might be of independent interest to the field and our results represent the first attempt at this task in the NAR literature.
Related papers
- Deep Equilibrium Algorithmic Reasoning [18.651333116786084]
We study neurally solving algorithms from a different perspective.
Since the algorithm's solution is often an equilibrium, it is possible to find the solution directly by solving an equilibrium equation.
Our approach requires no information on the ground-truth number of steps of the algorithm, both during train and test time.
arXiv Detail & Related papers (2024-10-19T10:40:55Z) - Sample Complexity of Algorithm Selection Using Neural Networks and Its Applications to Branch-and-Cut [1.4624458429745086]
We build upon recent work in this line of research by considering the setup where, instead of selecting a single algorithm that has the best performance, we allow the possibility of selecting an algorithm based on the instance to be solved.
In particular, given a representative sample of instances, we learn a neural network that maps an instance of the problem to the most appropriate algorithm for that instance.
In other words, the neural network will take as input a mixed-integer optimization instance and output a decision that will result in a small branch-and-cut tree for that instance.
arXiv Detail & Related papers (2024-02-04T03:03:27Z) - Discretize Relaxed Solution of Spectral Clustering via a Non-Heuristic
Algorithm [77.53604156112144]
We develop a first-order term to bridge the original problem and discretization algorithm.
Since the non-heuristic method is aware of the original graph cut problem, the final discrete solution is more reliable.
arXiv Detail & Related papers (2023-10-19T13:57:38Z) - Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
We propose leveraging recent advancements in neural reasoning to improve the learning of CO problems.
We suggest pre-training our neural model on relevant algorithms before training it on CO instances.
Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.
arXiv Detail & Related papers (2023-05-18T13:59:02Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Optimizing Objective Functions from Trained ReLU Neural Networks via
Sampling [0.0]
This paper introduces scalable, sampling-based algorithms that optimize trained neural networks with ReLU activations.
We first propose an iterative algorithm that takes advantage of the piecewise linear structure of ReLU neural networks.
We then extend this approach by searching around the neighborhood of the LP solution computed at each iteration.
arXiv Detail & Related papers (2022-05-27T18:35:48Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.