CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer
- URL: http://arxiv.org/abs/2409.07092v1
- Date: Wed, 11 Sep 2024 08:26:28 GMT
- Title: CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer
- Authors: Feiyang Jia, Zhineng Chen, Ziying Song, Lin Liu, Caiyan Jia,
- Abstract summary: Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging.
We propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture.
Our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations.
- Score: 15.930878163092983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging. We found that the design principles of most existing methods are influenced by SR tasks based on real-world images and do not take into account the significance of the multi-level structure in pathological images, even if they can achieve respectable objective metric evaluations. In this work, we delve into two super-resolution working paradigms and propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture. Our network consists of two branches: one dedicated to learning super-resolution and the other to high-frequency wavelet features. To generate high-resolution histopathology images, the Transformer module shares and fuses features from both branches at various stages. Notably, we have designed a specialized wavelet reconstruction module to effectively enhance the wavelet domain features and enable the network to operate in different modes, allowing for the introduction of additional relevant information from cross-scale images. Our experimental results demonstrate that our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations and can substantially boost the accuracy of image diagnostic networks.
Related papers
- WTDUN: Wavelet Tree-Structured Sampling and Deep Unfolding Network for Image Compressed Sensing [51.94493817128006]
We propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the multi-scale wavelet subbands.
Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet coefficients to achieve a tree-structured sampling and reconstruction.
arXiv Detail & Related papers (2024-11-25T12:31:03Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Learn From Orientation Prior for Radiograph Super-Resolution:
Orientation Operator Transformer [8.009052363001903]
High-resolution radiographic images play a pivotal role in the early diagnosis and treatment of skeletal muscle-related diseases.
It is promising to enhance image quality by introducing single-image super-resolution (SISR) model into the radiology image field.
The conventional image pipeline, which can learn a mixed mapping between SR and denoising from the color space and inter-pixel patterns, poses a particular challenge for radiographic images with limited pattern features.
arXiv Detail & Related papers (2023-12-27T07:56:24Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - SRTransGAN: Image Super-Resolution using Transformer based Generative
Adversarial Network [16.243363392717434]
We propose a transformer-based encoder-decoder network as a generator to generate 2x images and 4x images.
The proposed SRTransGAN outperforms the existing methods by 4.38 % on an average of PSNR and SSIM scores.
arXiv Detail & Related papers (2023-12-04T16:22:39Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Flow-based Visual Quality Enhancer for Super-resolution Magnetic
Resonance Spectroscopic Imaging [13.408365072149795]
We propose a flow-based enhancer network to improve the visual quality of super-resolution MRSI.
Our enhancer network incorporates anatomical information from additional image modalities (MRI) and uses a learnable base distribution.
Our method also allows visual quality adjustment and uncertainty estimation.
arXiv Detail & Related papers (2022-07-20T20:19:44Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.