LLM-based feature generation from text for interpretable machine learning
- URL: http://arxiv.org/abs/2409.07132v1
- Date: Wed, 11 Sep 2024 09:29:28 GMT
- Title: LLM-based feature generation from text for interpretable machine learning
- Authors: Vojtěch Balek, Lukáš Sýkora, Vilém Sklenák, Tomáš Kliegr,
- Abstract summary: Existing text representations such as embeddings and bag-of-words are not suitable for rule learning due to their high dimensionality and absent or questionable feature-level interpretability.
This article explores whether large language models (LLMs) could address this by extracting a small number of interpretable features from text.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing text representations such as embeddings and bag-of-words are not suitable for rule learning due to their high dimensionality and absent or questionable feature-level interpretability. This article explores whether large language models (LLMs) could address this by extracting a small number of interpretable features from text. We demonstrate this process on two datasets (CORD-19 and M17+) containing several thousand scientific articles from multiple disciplines and a target being a proxy for research impact. An evaluation based on testing for the statistically significant correlation with research impact has shown that LLama 2-generated features are semantically meaningful. We consequently used these generated features in text classification to predict the binary target variable representing the citation rate for the CORD-19 dataset and the ordinal 5-class target representing an expert-awarded grade in the M17+ dataset. Machine-learning models trained on the LLM-generated features provided similar predictive performance to the state-of-the-art embedding model SciBERT for scientific text. The LLM used only 62 features compared to 768 features in SciBERT embeddings, and these features were directly interpretable, corresponding to notions such as article methodological rigor, novelty, or grammatical correctness. As the final step, we extract a small number of well-interpretable action rules. Consistently competitive results obtained with the same LLM feature set across both thematically diverse datasets show that this approach generalizes across domains.
Related papers
- Feature-Level Insights into Artificial Text Detection with Sparse Autoencoders [20.557610461777344]
We use Sparse Autoencoders (SAE) to extract features from Gemma-2-2b residual stream.
We identify both interpretable and efficient features, analyzing their semantics and relevance.
Our methods offer valuable insights into how texts from various models differ from human-written content.
arXiv Detail & Related papers (2025-03-05T15:33:52Z) - Self-Regularization with Latent Space Explanations for Controllable LLM-based Classification [29.74457390987092]
We propose a novel framework to identify and regularize unintended features in large language models (LLMs) latent spaces.
We evaluate the proposed framework on three real-world tasks, including toxic chat detection, reward modeling, and disease diagnosis.
arXiv Detail & Related papers (2025-02-19T22:27:59Z) - Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
Large Language Models (LLMs) have influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities.
We aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective.
Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application.
arXiv Detail & Related papers (2024-08-21T22:35:19Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
We propose a simple yet effective black-box zero-shot detection approach based on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.
Experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods.
arXiv Detail & Related papers (2024-05-07T12:57:01Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - Token Prediction as Implicit Classification to Identify LLM-Generated
Text [37.89852204279844]
This paper introduces a novel approach for identifying the possible large language models (LLMs) involved in text generation.
Instead of adding an additional classification layer to a base LM, we reframe the classification task as a next-token prediction task.
We utilize the Text-to-Text Transfer Transformer (T5) model as the backbone for our experiments.
arXiv Detail & Related papers (2023-11-15T06:33:52Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - From Text to Source: Results in Detecting Large Language Model-Generated Content [17.306542392779445]
Large Language Models (LLMs) are celebrated for their ability to generate human-like text.
This paper investigates "Cross-Model Detection," by evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training.
The research also explores Model Attribution, encompassing source model identification, model family, and model size classification, in addition to quantization and watermarking detection.
arXiv Detail & Related papers (2023-09-23T09:51:37Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.