Phy124: Fast Physics-Driven 4D Content Generation from a Single Image
- URL: http://arxiv.org/abs/2409.07179v1
- Date: Wed, 11 Sep 2024 10:41:46 GMT
- Title: Phy124: Fast Physics-Driven 4D Content Generation from a Single Image
- Authors: Jiajing Lin, Zhenzhong Wang, Yongjie Hou, Yuzhou Tang, Min Jiang,
- Abstract summary: We introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image.
Phy124 integrates physical simulation directly into the 4D generation process, ensuring the resulting 4D content adheres to natural physical laws.
Experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times.
- Score: 3.0613673973976625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 4D content generation focuses on creating dynamic 3D objects that change over time. Existing methods primarily rely on pre-trained video diffusion models, utilizing sampling processes or reference videos. However, these approaches face significant challenges. Firstly, the generated 4D content often fails to adhere to real-world physics since video diffusion models do not incorporate physical priors. Secondly, the extensive sampling process and the large number of parameters in diffusion models result in exceedingly time-consuming generation processes. To address these issues, we introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image. Phy124 integrates physical simulation directly into the 4D generation process, ensuring that the resulting 4D content adheres to natural physical laws. Phy124 also eliminates the use of diffusion models during the 4D dynamics generation phase, significantly speeding up the process. Phy124 allows for the control of 4D dynamics, including movement speed and direction, by manipulating external forces. Extensive experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times, achieving stateof-the-art performance. The code and generated 4D content are available at the provided link: https://anonymous.4open.science/r/BBF2/.
Related papers
- Phys4DGen: A Physics-Driven Framework for Controllable and Efficient 4D Content Generation from a Single Image [3.131272328696594]
Existing methods rely heavily on pre-trained video diffusion models to guide 4D content dynamics.
We propose Phys4DGen, a novel framework that generates physics-compliant 4D content from a single image.
Inspired by the human ability to infer physical properties visually, we introduce a Physical Perception Module.
arXiv Detail & Related papers (2024-11-25T12:12:38Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - 4Diffusion: Multi-view Video Diffusion Model for 4D Generation [55.82208863521353]
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models.
We propose a novel 4D generation pipeline, namely 4Diffusion, aimed at generating spatial-temporally consistent 4D content from a monocular video.
arXiv Detail & Related papers (2024-05-31T08:18:39Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - AnimateMe: 4D Facial Expressions via Diffusion Models [72.63383191654357]
Recent advances in diffusion models have enhanced the capabilities of generative models in 2D animation.
We employ Graph Neural Networks (GNNs) as denoising diffusion models in a novel approach, formulating the diffusion process directly on the mesh space.
This facilitates the generation of facial deformations through a mesh-diffusion-based model.
arXiv Detail & Related papers (2024-03-25T21:40:44Z) - Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video [42.10482273572879]
We propose an efficient video-to-4D object generation framework called Efficient4D.
It generates high-quality spacetime-consistent images under different camera views, and then uses them as labeled data.
Experiments on both synthetic and real videos show that Efficient4D offers a remarkable 10-fold increase in speed.
arXiv Detail & Related papers (2024-01-16T18:58:36Z) - Animate124: Animating One Image to 4D Dynamic Scene [108.17635645216214]
Animate124 is the first work to animate a single in-the-wild image into 3D video through textual motion descriptions.
Our method demonstrates significant advancements over existing baselines.
arXiv Detail & Related papers (2023-11-24T16:47:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.