Phys4DGen: A Physics-Driven Framework for Controllable and Efficient 4D Content Generation from a Single Image
- URL: http://arxiv.org/abs/2411.16800v1
- Date: Mon, 25 Nov 2024 12:12:38 GMT
- Title: Phys4DGen: A Physics-Driven Framework for Controllable and Efficient 4D Content Generation from a Single Image
- Authors: Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, Min Jiang,
- Abstract summary: Existing methods rely heavily on pre-trained video diffusion models to guide 4D content dynamics.
We propose Phys4DGen, a novel framework that generates physics-compliant 4D content from a single image.
Inspired by the human ability to infer physical properties visually, we introduce a Physical Perception Module.
- Score: 3.131272328696594
- License:
- Abstract: The task of 4D content generation involves creating dynamic 3D models that evolve over time in response to specific input conditions, such as images. Existing methods rely heavily on pre-trained video diffusion models to guide 4D content dynamics, but these approaches often fail to capture essential physical principles, as video diffusion models lack a robust understanding of real-world physics. Moreover, these models face challenges in providing fine-grained control over dynamics and exhibit high computational costs. In this work, we propose Phys4DGen, a novel, high-efficiency framework that generates physics-compliant 4D content from a single image with enhanced control capabilities. Our approach uniquely integrates physical simulations into the 4D generation pipeline, ensuring adherence to fundamental physical laws. Inspired by the human ability to infer physical properties visually, we introduce a Physical Perception Module (PPM) that discerns the material properties and structural components of the 3D object from the input image, facilitating accurate downstream simulations. Phys4DGen significantly accelerates the 4D generation process by eliminating iterative optimization steps in the dynamics modeling phase. It allows users to intuitively control the movement speed and direction of generated 4D content by adjusting external forces, achieving finely tunable, physically plausible animations. Extensive evaluations show that Phys4DGen outperforms existing methods in both inference speed and physical realism, producing high-quality, controllable 4D content.
Related papers
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.
Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation [29.831214435147583]
We present PhysGen, a novel image-to-video generation method.
It produces a realistic, physically plausible, and temporally consistent video.
Our key insight is to integrate model-based physical simulation with a data-driven video generation process.
arXiv Detail & Related papers (2024-09-27T17:59:57Z) - Phy124: Fast Physics-Driven 4D Content Generation from a Single Image [3.0613673973976625]
We introduce Phy124, a novel, fast, and physics-driven method for controllable 4D content generation from a single image.
Phy124 integrates physical simulation directly into the 4D generation process, ensuring the resulting 4D content adheres to natural physical laws.
Experiments demonstrate that Phy124 generates high-fidelity 4D content with significantly reduced inference times.
arXiv Detail & Related papers (2024-09-11T10:41:46Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors [75.83647027123119]
We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
arXiv Detail & Related papers (2024-06-03T16:05:25Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
We present D&D (Learning Human Dynamics from Dynamic Camera), which leverages the laws of physics to reconstruct 3D human motion from the in-the-wild videos with a moving camera.
Our approach is entirely neural-based and runs without offline optimization or simulation in physics engines.
arXiv Detail & Related papers (2022-09-19T06:51:02Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
We propose a unified framework that can jointly learn visual concepts and infer physics models of objects from videos and language.
This is achieved by seamlessly integrating three components: a visual perception module, a concept learner, and a differentiable physics engine.
arXiv Detail & Related papers (2021-10-28T17:59:13Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.