論文の概要: Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging
- arxiv url: http://arxiv.org/abs/2409.07186v2
- Date: Sat, 14 Sep 2024 13:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 12:29:39.815171
- Title: Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging
- Title(参考訳): 脳拡散テンソルイメージングにおける方向性エンコーディングと幾何学的制約による角分解能の増強
- Authors: Sheng Chen, Zihao Tang, Mariano Cabezas, Xinyi Wang, Arkiev D'Souza, Michael Barnett, Fernando Calamante, Weidong Cai, Chenyu Wang,
- Abstract要約: 拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
- 参考スコア(独自算出の注目度): 70.66500060987312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules, offering the capability to inspect tissue microstructures and is the only in-vivo method to reconstruct white matter fiber tracts non-invasively. The DWI signal can be analysed with the diffusion tensor imaging (DTI) model to estimate the directionality of water diffusion within voxels. Several scalar metrics, including axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), can be further derived from DTI to quantitatively summarise the microstructural integrity of brain tissue. These scalar metrics have played an important role in understanding the organisation and health of brain tissue at a microscopic level in clinical studies. However, reliable DTI metrics rely on DWI acquisitions with high gradient directions, which often go beyond the commonly used clinical protocols. To enhance the utility of clinically acquired DWI and save scanning time for robust DTI analysis, this work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions. DirGeo-DTI leverages directional encoding and geometric constraints to facilitate the training process. Two public DWI datasets were used for evaluation, demonstrating the effectiveness of the proposed method. Extensive experimental results show that the proposed method achieves the best performance compared to existing DTI enhancement methods and potentially reveals further clinical insights with routine clinical DWI scans.
- Abstract(参考訳): 拡散強調画像(DWI)は、水分子の拡散率に敏感な磁気共鳴イメージング(MRI)技術の一種であり、組織微細構造を検査する能力を提供し、非侵襲的に白質繊維の管を再構築する唯一の生体内方法である。
DWI信号は拡散テンソルイメージング(DTI)モデルで解析でき、ボクセル内の水拡散の方向を推定できる。
軸方向拡散率(AD)、平均拡散率(MD)、放射差拡散率(RD)、分画異方性(FA)などのスカラー指標は、DTIからさらに導出され、脳組織の微細構造的整合性を定量的に要約することができる。
これらのスカラー測定は、臨床研究において、脳組織の組織と健康を顕微鏡レベルで理解する上で重要な役割を担っている。
しかし、信頼性の高いDTIメトリクスは、一般的に使用される臨床プロトコルを超えて、高い勾配方向のDWI取得に依存している。
そこで本研究ではDirGeo-DTIを提案する。DirGeo-DTIは,DTIの信頼性を推定する深層学習手法である。DirGeo-DTIは,最小理論的数(6)の勾配方向で取得したDWIからでも,信頼性の高いDTIメトリクスを推定する手法である。
DirGeo-DTIは、トレーニングプロセスを容易にするために方向エンコーディングと幾何学的制約を利用する。
2つの公開DWIデータセットを用いて評価を行い,提案手法の有効性を実証した。
以上の結果から,本手法は既存のDTI拡張法と比較して最高の成績を示し,定期的な臨床的DWIスキャンによりさらなる臨床所見が明らかになる可能性が示唆された。
関連論文リスト
- Reliable Deep Diffusion Tensor Estimation: Rethinking the Power of Data-Driven Optimization Routine [17.516054970588137]
本研究では,データ駆動型最適化手法であるDoDTIを紹介する。
提案手法はDTIパラメータ推定における最先端性能を実現する。
特に、より優れた一般化、精度、効率を示し、この分野の幅広い応用に高い信頼性を与えている。
論文 参考訳(メタデータ) (2024-09-04T07:35:12Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
測定したDW-MRI信号をモデル化するための一般的なプラクティスは、繊維配向分布関数(fODF)である。
DW-MRIの取得において、測定変数(サイト内およびサイト内変動、ハードウェア性能、シーケンス設計など)は避けられない。
既存のモデルベース手法(例えば、制約付き球面デコンボリューション(CSD))や学習ベース手法(例えば、ディープラーニング(DL))は、fODFモデリングにおいてそのような変動を明示的に考慮していない。
本稿では,データ駆動型深部制約付き球面デコンボリューション法を提案する。
論文 参考訳(メタデータ) (2023-06-05T14:06:40Z) - TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted
Diffusion Tensor Imaging [32.02624872108258]
本稿では,DTIスライスを塗布する3D-Wise-Aware Gate Network (TW-BAG)を提案する。
提案手法をHuman Connectome Project (HCP) データセット上で評価した。
実験の結果,提案手法は脳のDTI容積を再構築し,関連性のある臨床画像情報を復元できることが示唆された。
論文 参考訳(メタデータ) (2022-10-31T05:53:02Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - SuperDTI: Ultrafast diffusion tensor imaging and fiber tractography with
deep learning [12.797957906141363]
拡散重み付き画像(DWI)と対応するテンソル導出量マップとの非線形関係を学習するためのSuperDTIを提案する。
SuperDTIは、DWIのノイズや動きに非常に敏感なテンソルフィッティング手順をバイパスする。
論文 参考訳(メタデータ) (2020-02-03T22:15:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。