論文の概要: Diffusion Bridge Models for 3D Medical Image Translation
- arxiv url: http://arxiv.org/abs/2504.15267v1
- Date: Mon, 21 Apr 2025 17:49:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 15:53:00.41027
- Title: Diffusion Bridge Models for 3D Medical Image Translation
- Title(参考訳): 3次元医用画像翻訳のための拡散ブリッジモデル
- Authors: Shaorong Zhang, Tamoghna Chattopadhyay, Sophia I. Thomopoulos, Jose-Luis Ambite, Paul M. Thompson, Greg Ver Steeg,
- Abstract要約: 本稿では,T1w MRIとDTIモダリティ間の3次元脳画像変換のための拡散ブリッジモデルを提案する。
我々のモデルは、T1w画像から高品質なDTI分画異方性画像を生成することを学習し、その逆も実現し、モダリティデータの増大を可能にする。
- 参考スコア(独自算出の注目度): 15.751276389741877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion tensor imaging (DTI) provides crucial insights into the microstructure of the human brain, but it can be time-consuming to acquire compared to more readily available T1-weighted (T1w) magnetic resonance imaging (MRI). To address this challenge, we propose a diffusion bridge model for 3D brain image translation between T1w MRI and DTI modalities. Our model learns to generate high-quality DTI fractional anisotropy (FA) images from T1w images and vice versa, enabling cross-modality data augmentation and reducing the need for extensive DTI acquisition. We evaluate our approach using perceptual similarity, pixel-level agreement, and distributional consistency metrics, demonstrating strong performance in capturing anatomical structures and preserving information on white matter integrity. The practical utility of the synthetic data is validated through sex classification and Alzheimer's disease classification tasks, where the generated images achieve comparable performance to real data. Our diffusion bridge model offers a promising solution for improving neuroimaging datasets and supporting clinical decision-making, with the potential to significantly impact neuroimaging research and clinical practice.
- Abstract(参考訳): 拡散テンソルイメージング(DTI)は、ヒト脳の微細構造に関する重要な洞察を提供するが、より容易に利用できるT1強調(T1w)磁気共鳴イメージング(MRI)と比較して、取得するのに時間がかかる。
そこで本研究では,T1w MRIとDTIモダリティ間の3次元脳画像変換のための拡散ブリッジモデルを提案する。
我々のモデルは、T1w画像から高品質なDTI分画異方性(FA)画像を生成することを学習し、またその逆も実現し、モダリティデータの増大を可能にし、広範囲なDTI取得の必要性を減らす。
我々は, 知覚的類似性, 画素レベルの一致, 分布的整合性の測定値を用いて, 解剖学的構造を捉え, ホワイトマターの整合性に関する情報を保存する上で, 強い性能を示す。
合成データの実用性は、性分類とアルツハイマー病分類タスクによって検証され、生成した画像は実データと同等のパフォーマンスを達成する。
我々の拡散ブリッジモデルは、ニューロイメージングのデータセットを改善し、臨床意思決定を支援するための有望なソリューションを提供し、ニューロイメージングの研究と臨床実践に大きな影響を与える可能性がある。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
拡散強調画像(DWI)は、水分子の拡散率に感応した磁気共鳴イメージング(MRI)の一種である。
本研究はDirGeo-DTIを提案する。DirGeo-DTIは、勾配方向の最小理論数(6)で得られたDWIの集合からでも、信頼できるDTIメトリクスを推定する深層学習に基づく手法である。
論文 参考訳(メタデータ) (2024-09-11T11:12:26Z) - Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - FDDM: Unsupervised Medical Image Translation with a Frequency-Decoupled Diffusion Model [2.2726755789556794]
MR-CT変換のための周波数分離拡散モデルを提案する。
我々のモデルは低周波・高周波情報に二重経路逆拡散法を用いる。
翻訳された解剖学的構造の精度を維持しつつ、高品質なターゲットドメイン画像を生成することができる。
論文 参考訳(メタデータ) (2023-11-19T19:44:44Z) - DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model [3.890243179348094]
医療応用のための堅牢で成功したディープラーニングモデルを開発するためには、大規模で大きな変動のある高品質なデータが不可欠である。
本稿では,DiffBoostと呼ばれる医用画像合成のための制御可能な拡散モデルを提案する。
近年の拡散確率モデルを利用して、現実的で多様な合成医用画像データを生成する。
論文 参考訳(メタデータ) (2023-10-19T16:18:02Z) - Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D
Medical Image Generation [0.6486409713123691]
拡散確率モデルが高品質な医用画像データを合成可能であることを示す。
本研究は,2人の医療専門家による読影研究を通じて,そのパフォーマンスを定量的に測定する。
自己教師付き事前訓練において合成画像が利用可能であることを示し,データ不足時の乳房分割モデルの性能向上を図った。
論文 参考訳(メタデータ) (2022-11-07T08:37:48Z) - TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted
Diffusion Tensor Imaging [32.02624872108258]
本稿では,DTIスライスを塗布する3D-Wise-Aware Gate Network (TW-BAG)を提案する。
提案手法をHuman Connectome Project (HCP) データセット上で評価した。
実験の結果,提案手法は脳のDTI容積を再構築し,関連性のある臨床画像情報を復元できることが示唆された。
論文 参考訳(メタデータ) (2022-10-31T05:53:02Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。