論文の概要: MiniDrive: More Efficient Vision-Language Models with Multi-Level 2D Features as Text Tokens for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2409.07267v3
- Date: Wed, 25 Sep 2024 03:53:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 21:53:46.362061
- Title: MiniDrive: More Efficient Vision-Language Models with Multi-Level 2D Features as Text Tokens for Autonomous Driving
- Title(参考訳): MiniDrive: 自動運転のためのテキストトークンとしてマルチレベル2D機能を備えた高効率ビジョンランゲージモデル
- Authors: Enming Zhang, Xingyuan Dai, Yisheng Lv, Qinghai Miao,
- Abstract要約: 視覚言語モデル(VLM)は、自律運転における汎用的なエンドツーエンドモデルとして機能する。
既存のほとんどの手法は計算コストのかかるビジュアルエンコーダと大言語モデル(LLM)に依存している。
提案するFE-MoE(Feature Engineering Mixture of Experts)モジュールとDI-Adapter(Dynamic Instruction Adapter)を組み込んだMiniDriveという新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.74799483937468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models (VLMs) serve as general-purpose end-to-end models in autonomous driving, performing subtasks such as prediction, planning, and perception through question-and-answer interactions. However, most existing methods rely on computationally expensive visual encoders and large language models (LLMs), making them difficult to deploy in real-world scenarios and real-time applications. Meanwhile, most existing VLMs lack the ability to process multiple images, making it difficult to adapt to multi-camera perception in autonomous driving. To address these issues, we propose a novel framework called MiniDrive, which incorporates our proposed Feature Engineering Mixture of Experts (FE-MoE) module and Dynamic Instruction Adapter (DI-Adapter). The FE-MoE effectively maps 2D features into visual token embeddings before being input into the language model. The DI-Adapter enables the visual token embeddings to dynamically change with the instruction text embeddings, resolving the issue of static visual token embeddings for the same image in previous approaches. Compared to previous works, MiniDrive achieves state-of-the-art performance in terms of parameter size, floating point operations, and response efficiency, with the smallest version containing only 83M parameters.
- Abstract(参考訳): 視覚言語モデル(VLM)は、自律運転における汎用エンド・ツー・エンド・モデルとして機能し、質問と回答の相互作用を通じて予測、計画、知覚などのサブタスクを実行する。
しかし、既存のほとんどの手法は計算に高価なビジュアルエンコーダと大規模言語モデル(LLM)に依存しており、現実のシナリオやリアルタイムアプリケーションへのデプロイが困難である。
一方、既存のVLMには複数の画像を処理する能力がないため、自律運転におけるマルチカメラの認識に適応することが困難である。
これらの問題に対処するために,提案したFE-MoEモジュールと動的命令適応器(DI-Adapter)を組み込んだMiniDriveという新しいフレームワークを提案する。
FE-MoEは、言語モデルに入力される前に、2D機能を視覚トークンの埋め込みに効果的にマッピングする。
DI-Adapterは、ビジュアルトークンの埋め込みを命令テキストの埋め込みで動的に変更することを可能にし、以前のアプローチで同じイメージに対する静的なビジュアルトークンの埋め込みの問題を解決する。
これまでの作業と比較すると、MiniDriveはパラメータサイズ、浮動小数点演算、レスポンス効率の点で最先端のパフォーマンスを実現しており、最小のバージョンは83Mパラメータのみである。
関連論文リスト
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - PerspectiveNet: Multi-View Perception for Dynamic Scene Understanding [1.2781698000674653]
PerspectiveNetは、複数のカメラビューにわたる長い記述を生成するための軽量モデルである。
提案手法では,視覚エンコーダ,コンパクトコネクタモジュール,および大規模言語モデルを用いる。
結果として得られるモデルは軽量で、効率的なトレーニングと推論を確実にします。
論文 参考訳(メタデータ) (2024-10-22T08:57:17Z) - EVLM: An Efficient Vision-Language Model for Visual Understanding [18.794601813330715]
本稿では,計算コストを最小化する効率的なマルチモーダル言語モデルを提案する。
画像キャプションやビデオキャプションといったタスクにおいて,公開マルチモーダルベンチマークの競合スコアを達成し,良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-07-19T10:09:51Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2は、エンドツーエンドの汎用マルチモーダル大モデル(MLLM)である。
単一のフレームワーク内で視覚的知覚、理解、生成を統一する。
論文 参考訳(メタデータ) (2024-06-12T16:44:50Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Multi-Frame, Lightweight & Efficient Vision-Language Models for Question Answering in Autonomous Driving [0.0]
我々は,自律運転のための視覚質問応答を行う,効率的で軽量な多フレーム視覚言語モデルを開発した。
従来のアプローチと比較して、EM-VLM4ADは少なくとも10倍のメモリと浮動小数点演算を必要とする。
論文 参考訳(メタデータ) (2024-03-28T21:18:33Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLMは、粗くきめ細かな視覚言語タスクに対処する視覚システムである。
2値分割マスクをシーケンスとして表現するために、勾配対応の適応サンプリング技術を採用している。
また、新しいタスクであるAttCoSegを導入し、複数の入力画像に対してモデルの推論とグラウンド化能力を高める。
論文 参考訳(メタデータ) (2023-12-19T18:53:01Z) - MiniGPT-v2: large language model as a unified interface for
vision-language multi-task learning [65.60607895153692]
MiniGPT-v2は、様々な視覚言語タスクをよりよく扱うための統一インターフェースとして扱うことができるモデルである。
モデルをトレーニングする際、異なるタスクに対してユニークな識別子を使うことを提案する。
以上の結果から,MiniGPT-v2は多くの視覚的質問応答および視覚的接地ベンチマークにおいて高い性能を達成できた。
論文 参考訳(メタデータ) (2023-10-14T03:22:07Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffinフレームワークは、事前訓練された視覚言語モデルを使用して視覚信号のプロバイダとして機能する。
UniMM-Chatデータセットはデータセットの相補性を探求し、高品質で多様なマルチモーダル命令を生成する。
論文 参考訳(メタデータ) (2023-10-01T12:35:18Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。