Optimizing Neural Network Performance and Interpretability with Diophantine Equation Encoding
- URL: http://arxiv.org/abs/2409.07310v1
- Date: Wed, 11 Sep 2024 14:38:40 GMT
- Title: Optimizing Neural Network Performance and Interpretability with Diophantine Equation Encoding
- Authors: Ronald Katende,
- Abstract summary: We introduce a novel approach that enhances the precision and robustness of deep learning models.
Our method integrates a custom loss function that enforces Diophantine constraints during training, leading to better generalization, reduced error bounds, and enhanced resilience against adversarial attacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the integration of Diophantine equations into neural network (NN) architectures to improve model interpretability, stability, and efficiency. By encoding and decoding neural network parameters as integer solutions to Diophantine equations, we introduce a novel approach that enhances both the precision and robustness of deep learning models. Our method integrates a custom loss function that enforces Diophantine constraints during training, leading to better generalization, reduced error bounds, and enhanced resilience against adversarial attacks. We demonstrate the efficacy of this approach through several tasks, including image classification and natural language processing, where improvements in accuracy, convergence, and robustness are observed. This study offers a new perspective on combining mathematical theory and machine learning to create more interpretable and efficient models.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - The limitation of neural nets for approximation and optimization [0.0]
We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
arXiv Detail & Related papers (2023-11-21T00:21:15Z) - Learning Interpretable Deep Disentangled Neural Networks for
Hyperspectral Unmixing [16.02193274044797]
We propose a new interpretable deep learning method for hyperspectral unmixing that accounts for nonlinearity and endmember variability.
The model is learned end-to-end using backpropagation, and trained using a self-supervised strategy.
Experimental results on synthetic and real datasets illustrate the performance of the proposed method.
arXiv Detail & Related papers (2023-10-03T18:21:37Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Efficiently Solving High-Order and Nonlinear ODEs with Rational Fraction
Polynomial: the Ratio Net [3.155317790896023]
This study takes a different approach by introducing neural network architecture for constructing trial functions, known as ratio net.
Through empirical trials, it demonstrated that the proposed method exhibits higher efficiency compared to existing approaches.
The ratio net holds promise for advancing the efficiency and effectiveness of solving differential equations.
arXiv Detail & Related papers (2021-05-18T16:59:52Z) - Recognizing and Verifying Mathematical Equations using Multiplicative
Differential Neural Units [86.9207811656179]
We show that memory-augmented neural networks (NNs) can achieve higher-order, memory-augmented extrapolation, stable performance, and faster convergence.
Our models achieve a 1.53% average improvement over current state-of-the-art methods in equation verification and achieve a 2.22% Top-1 average accuracy and 2.96% Top-5 average accuracy for equation completion.
arXiv Detail & Related papers (2021-04-07T03:50:11Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.