論文の概要: Three-Dimensional, Multimodal Synchrotron Data for Machine Learning Applications
- arxiv url: http://arxiv.org/abs/2409.07322v1
- Date: Wed, 11 Sep 2024 15:00:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:13:20.295642
- Title: Three-Dimensional, Multimodal Synchrotron Data for Machine Learning Applications
- Title(参考訳): 機械学習応用のための三次元マルチモーダル放射光データ
- Authors: Calum Green, Sharif Ahmed, Shashidhara Marathe, Liam Perera, Alberto Leonardi, Killian Gmyrek, Daniele Dini, James Le Houx,
- Abstract要約: 亜鉛をドープしたゼオライト13Xサンプルのユニークなマルチモーダルシンクロトロンデータセットを提示する。
高度なディープラーニングとデータ融合パイプラインを開発するために使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning techniques are being increasingly applied in medical and physical sciences across a variety of imaging modalities; however, an important issue when developing these tools is the availability of good quality training data. Here we present a unique, multimodal synchrotron dataset of a bespoke zinc-doped Zeolite 13X sample that can be used to develop advanced deep learning and data fusion pipelines. Multi-resolution micro X-ray computed tomography was performed on a zinc-doped Zeolite 13X fragment to characterise its pores and features, before spatially resolved X-ray diffraction computed tomography was carried out to characterise the homogeneous distribution of sodium and zinc phases. Zinc absorption was controlled to create a simple, spatially isolated, two-phase material. Both raw and processed data is available as a series of Zenodo entries. Altogether we present a spatially resolved, three-dimensional, multimodal, multi-resolution dataset that can be used for the development of machine learning techniques. Such techniques include development of super-resolution, multimodal data fusion, and 3D reconstruction algorithm development.
- Abstract(参考訳): 機械学習技術は、様々な画像モダリティの医療や物理科学にますます応用されているが、これらのツールを開発する際の重要な問題は、高品質なトレーニングデータの提供である。
ここでは,亜鉛をドープしたゼオライト13Xサンプルの,高度な深層学習とデータ融合パイプラインの開発に使用できる,ユニークなマルチモーダルシンクロトロンデータセットを提案する。
亜鉛をドープしたゼオライト13Xフラグメント上で多分解能マイクロX線CTを行い, その細孔と特徴を特徴づけた上で, 空間分解X線回折CTを行い, ナトリウム相と亜鉛相の均一分布を解析した。
亜鉛の吸収は、単純で空間的に孤立した2相の物質を作るために制御された。
生データも処理データも、Zenodoの一連のエントリとして利用できる。
また、空間的に解決された3次元・マルチモーダル・マルチレゾリューション・データセットも提示し、機械学習技術の開発に利用することができる。
このような技術には、超解像、マルチモーダルデータ融合、および3次元再構成アルゴリズムの開発が含まれる。
関連論文リスト
- FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields [50.12118098874321]
ニューラルボクセル場に対する潜在3次元拡散過程を導入し,高分解能で生成を可能にする。
部分符号を神経ボクセル場に統合し、正確な部分分解を導出するために、部分認識形状復号器を導入する。
その結果,既存の最先端手法よりも優れた部品認識形状生成において,提案手法の優れた生成能力を示した。
論文 参考訳(メタデータ) (2024-05-02T04:31:17Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - A robust synthetic data generation framework for machine learning in
High-Resolution Transmission Electron Microscopy (HRTEM) [1.0923877073891446]
Construction Zoneは、複雑なナノスケール原子構造を高速に生成するためのPythonパッケージである。
ニューラルネットワークをトレーニングするための大規模なシミュレーションデータベースを作成するためのエンドツーエンドワークフローを開発する。
この結果から, ナノ粒子のHRTEM画像に対して, 最先端のセグメンテーション性能を実現することができた。
論文 参考訳(メタデータ) (2023-09-12T10:44:15Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - 2DeteCT -- A large 2D expandable, trainable, experimental Computed
Tomography dataset for machine learning [1.0266286487433585]
機械学習技術の開発に適した,汎用的でオープンな2次元ファンビームCTデータセットを提供する。
形状, 密度の異なる多種多様な試料をスライス・バイ・スライスでスキャンした。
我々は、オープンソースのデータ処理パイプラインに基づいて、生のプロジェクションデータ、参照再構成、セグメンテーションを提供する。
論文 参考訳(メタデータ) (2023-06-09T14:02:53Z) - SimDistill: Simulated Multi-modal Distillation for BEV 3D Object
Detection [56.24700754048067]
多視点カメラによる3Dオブジェクト検出は低コストで普及しているが、カメラデータのみから正確に3D形状を推定することは依然として困難である。
モデルアーキテクチャと蒸留戦略を慎重に構築し,シミュレートされたマルチモーダル蒸留(SimDistill)法を提案する。
我々のSimDistillは、コスト効率のよいカメラのみの配置を維持しながら、3Dオブジェクト検出のためのより良い特徴表現を学習することができる。
論文 参考訳(メタデータ) (2023-03-29T16:08:59Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
本稿では,空間的および時間的注意を並列に効率的に計算するハイブリッドエンコーダデコーダフレームワークを提案する。
また,ミトコンドリアインスタンスの領域を背景から支援する訓練中に,意味的クラッタ・バックグラウンドの逆行性障害も導入した。
論文 参考訳(メタデータ) (2023-03-21T17:58:49Z) - Machine Learning for Detection of 3D Features using sparse X-ray data [6.295613527861694]
慣性凝縮核融合実験では、中性子収率とその他のパラメータは1次元モデルと2次元モデルで完全に説明できない。
この矛盾は、重要な3次元効果が存在することを示唆している。
これらの効果の源は、貝殻と貝殻の界面の欠陥、カプセルの充填管、二重の貝殻の標的の関節の特徴などである。
我々は畳み込みニューラルネットワークを用いて、実験データからICFインロジョンの異なる3次元表現を生成する。
論文 参考訳(メタデータ) (2022-06-02T22:36:54Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。