論文の概要: 2DeteCT -- A large 2D expandable, trainable, experimental Computed
Tomography dataset for machine learning
- arxiv url: http://arxiv.org/abs/2306.05907v1
- Date: Fri, 9 Jun 2023 14:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 13:10:31.235066
- Title: 2DeteCT -- A large 2D expandable, trainable, experimental Computed
Tomography dataset for machine learning
- Title(参考訳): 2DeteCT -- 機械学習のための大規模な2次元拡張可能、トレーニング可能、実験的なComputed Tomographyデータセット
- Authors: Maximilian B. Kiss, Sophia B. Coban, K. Joost Batenburg, Tristan van
Leeuwen, Felix Lucka
- Abstract要約: 機械学習技術の開発に適した,汎用的でオープンな2次元ファンビームCTデータセットを提供する。
形状, 密度の異なる多種多様な試料をスライス・バイ・スライスでスキャンした。
我々は、オープンソースのデータ処理パイプラインに基づいて、生のプロジェクションデータ、参照再構成、セグメンテーションを提供する。
- 参考スコア(独自算出の注目度): 1.0266286487433585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in computational imaging largely focuses on developing
machine learning (ML) techniques for image reconstruction, which requires
large-scale training datasets consisting of measurement data and ground-truth
images. However, suitable experimental datasets for X-ray Computed Tomography
(CT) are scarce, and methods are often developed and evaluated only on
simulated data. We fill this gap by providing the community with a versatile,
open 2D fan-beam CT dataset suitable for developing ML techniques for a range
of image reconstruction tasks. To acquire it, we designed a sophisticated,
semi-automatic scan procedure that utilizes a highly-flexible laboratory X-ray
CT setup. A diverse mix of samples with high natural variability in shape and
density was scanned slice-by-slice (5000 slices in total) with high angular and
spatial resolution and three different beam characteristics: A high-fidelity, a
low-dose and a beam-hardening-inflicted mode. In addition, 750
out-of-distribution slices were scanned with sample and beam variations to
accommodate robustness and segmentation tasks. We provide raw projection data,
reference reconstructions and segmentations based on an open-source data
processing pipeline.
- Abstract(参考訳): 最近の計算画像研究は、画像再構成のための機械学習(ml)技術の開発に重点を置いている。
しかし、X線CT(Computerd Tomography)に適した実験データセットは乏しく、シミュレーションデータのみを用いて手法を開発・評価することが多い。
我々は,多様な画像再構成タスクのためのml技術の開発に適したオープン2次元ファンビームctデータセットをコミュニティに提供することで,このギャップを埋めている。
そこで我々は,高フレキシブルなX線CT装置を用いた半自動スキャン手法を考案した。
形状と密度の異なる多種多様な試料のスライス・バイ・スライス(全5000スライス)を高角分解能,空間分解能,高密度,低線量,ビーム硬化モードの3つの異なるビーム特性でスキャンした。
さらに,頑健性やセグメンテーションタスクに対応するために,750個のスライスを試料とビームのバリエーションでスキャンした。
我々は、オープンソースのデータ処理パイプラインに基づいて、生のプロジェクションデータ、参照再構成、セグメンテーションを提供する。
関連論文リスト
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
本稿では,定量化のためのエンド・ツー・エンド材料分解(E2E-DEcomp)と呼ばれる深層学習手法を提案する。
AAPMスペクトルCTデータセットにおける直接E2E-DEcomp法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-01T16:20:59Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - XProspeCT: CT Volume Generation from Paired X-Rays [0.0]
我々は、X線画像をシミュレーションCTボリュームに変換するために、以前の研究に基づいて構築した。
モデルバリエーションには、UNetアーキテクチャ、カスタム接続、アクティベーション関数、損失関数、新しいバックプロジェクションアプローチなどがある。
論文 参考訳(メタデータ) (2024-02-11T21:57:49Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
論文 参考訳(メタデータ) (2023-02-13T15:15:18Z) - Simulation-Driven Training of Vision Transformers Enabling Metal
Segmentation in X-Ray Images [6.416928579907334]
本研究は,CTデータセットとCADインプラントを組み合わせたシミュレーションX線画像を生成することを提案する。
CBCT射影における金属セグメンテーションは、金属アーティファクト回避および還元アルゴリズムの前提条件となる。
本研究は,CADモデルに基づくデータ生成の柔軟性が向上し,臨床データサンプリングとラベル付けの不足を克服する手段となる可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-17T09:58:58Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
過剰な電離放射線は、体に決定論的かつ有害な影響をもたらす可能性がある。
本稿では,CTプロジェクションの再構成を学習する深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-02-02T13:25:23Z) - Image Synthesis for Data Augmentation in Medical CT using Deep
Reinforcement Learning [31.677682150726383]
本手法は, 新規かつ解剖学的に高精度な高解像度CT画像の大量かつ多種多様な生成に有効であることを示す。
私たちのアプローチは、多くの研究者が利用可能な画像データの少ない量を考えると望ましい小さな画像データセットでも機能するように特別に設計されています。
論文 参考訳(メタデータ) (2021-03-18T19:47:11Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。