Encoder with the Empirical Mode Decomposition (EMD) to remove muscle artefacts from EEG signal
- URL: http://arxiv.org/abs/2409.14571v1
- Date: Sun, 22 Sep 2024 19:22:22 GMT
- Title: Encoder with the Empirical Mode Decomposition (EMD) to remove muscle artefacts from EEG signal
- Authors: Ildar Rakhmatulin,
- Abstract summary: This paper introduces a novel method for effectively removing artifacts from EEG signals by combining the Empirical Mode Decomposition (EMD) method with a machine learning architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel method for effectively removing artifacts from EEG signals by combining the Empirical Mode Decomposition (EMD) method with a machine learning architecture. The proposed method addresses the limitations of existing artifact removal techniques by enhancing the EMD method through interpolation of the upper and lower. For conventional artifact removal methods, the EMD technique is commonly employed. However, the challenge lies in accurately interpolating the missing components of the signal while preserving its inherent frequency components. To overcome this limitation, we incorporated machine learning technique, which enables us to carefully handle the interpolation process without directly manipulating the data. The key advantage of our approach lies in the preservation of the natural characteristics of the EEG signal during artifact removal. By utilizing machine learning for interpolation, we ensure that the average component obtained through the EMD method retains the crucial frequency components of the original signal. This preservation is essential for maintaining the integrity and fidelity of the EEG data, allowing for accurate analysis and interpretation. The results obtained from our evaluation serve to validate the effectiveness of our approach and pave the way for further advancements in EEG signal processing and analysis.
Related papers
- ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
Artifact removal in electroencephalography (EEG) significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance.
This study presents an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals.
Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing.
arXiv Detail & Related papers (2024-09-11T15:05:40Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - ESTformer: Transformer Utilizing Spatiotemporal Dependencies for EEG
Super-resolution [14.2426667945505]
ESTformer is an EEG framework utilizingtemporal dependencies based on the Transformer.
The ESTformer applies positional encoding methods and the Multi-head Self-attention mechanism to the space and time dimensions.
arXiv Detail & Related papers (2023-12-03T12:26:32Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - EOG Artifact Removal from Single and Multi-channel EEG Recordings
through the combination of Long Short-Term Memory Networks and Independent
Component Analysis [0.0]
We present a novel methodology that combines a long short-term memory (LSTM)-based neural network with ICA to address the challenge of EOG artifact removal from EEG signals.
Our approach aims to accomplish two primary objectives: 1) estimate the horizontal and vertical EOG signals from the contaminated EEG data, and 2) employ ICA to eliminate the estimated EOG signals from the EEG.
arXiv Detail & Related papers (2023-08-25T13:32:28Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Artifact Detection and Correction in EEG data: A Review [0.0]
EEG applications are limited by low signal-to-noise ratios.
Many techniques have been proposed to detect and correct these artifacts.
In this paper we review a variety of recent and classical techniques for EEG data artifact detection and correction.
arXiv Detail & Related papers (2021-06-10T18:16:21Z) - Orthogonal Features Based EEG Signals Denoising Using Fractional and
Compressed One-Dimensional CNN AutoEncoder [3.8580784887142774]
This paper presents a fractional one-dimensional convolutional neural network (CNN) autoencoder for denoising the Electroencephalogram (EEG) signals.
EEG signals often get contaminated with noise during the recording process, mostly due to muscle artifacts (MA)
arXiv Detail & Related papers (2021-04-16T13:58:05Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.