Current Symmetry Group Equivariant Convolution Frameworks for Representation Learning
- URL: http://arxiv.org/abs/2409.07327v1
- Date: Wed, 11 Sep 2024 15:07:18 GMT
- Title: Current Symmetry Group Equivariant Convolution Frameworks for Representation Learning
- Authors: Ramzan Basheer, Deepak Mishra,
- Abstract summary: Euclidean deep learning is often inadequate for addressing real-world signals where the representation space is irregular and curved with complex topologies.
We focus on the importance of symmetry group equivariant deep learning models and their realization of convolution-like operations on graphs, 3D shapes, and non-Euclidean spaces.
- Score: 5.802794302956837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Euclidean deep learning is often inadequate for addressing real-world signals where the representation space is irregular and curved with complex topologies. Interpreting the geometric properties of such feature spaces has become paramount in obtaining robust and compact feature representations that remain unaffected by nontrivial geometric transformations, which vanilla CNNs cannot effectively handle. Recognizing rotation, translation, permutation, or scale symmetries can lead to equivariance properties in the learned representations. This has led to notable advancements in computer vision and machine learning tasks under the framework of geometric deep learning, as compared to their invariant counterparts. In this report, we emphasize the importance of symmetry group equivariant deep learning models and their realization of convolution-like operations on graphs, 3D shapes, and non-Euclidean spaces by leveraging group theory and symmetry. We categorize them as regular, steerable, and PDE-based convolutions and thoroughly examine the inherent symmetries of their input spaces and ensuing representations. We also outline the mathematical link between group convolutions or message aggregation operations and the concept of equivariance. The report also highlights various datasets, their application scopes, limitations, and insightful observations on future directions to serve as a valuable reference and stimulate further research in this emerging discipline.
Related papers
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Neural Isometries: Taming Transformations for Equivariant ML [8.203292895010748]
We introduce Neural Isometries, an autoencoder framework which learns to map the observation space to a general-purpose latent space.
We show that a simple off-the-shelf equivariant network operating in the pre-trained latent space can achieve results on par with meticulously-engineered, handcrafted networks.
arXiv Detail & Related papers (2024-05-29T17:24:25Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Equivariant Representation Learning via Class-Pose Decomposition [17.032782230538388]
We introduce a general method for learning representations that are equivariant to symmetries of data.
The components semantically correspond to intrinsic data classes and poses respectively.
Results show that our representations capture the geometry of data and outperform other equivariant representation learning frameworks.
arXiv Detail & Related papers (2022-07-07T06:55:52Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - Leveraging Equivariant Features for Absolute Pose Regression [9.30597356471664]
We show that a translation and rotation equivariant Convolutional Neural Network directly induces representations of camera motions into the feature space.
We then show that this geometric property allows for implicitly augmenting the training data under a whole group of image plane-preserving transformations.
arXiv Detail & Related papers (2022-04-05T12:44:20Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Geometric Algebra Attention Networks for Small Point Clouds [0.0]
Problems in the physical sciences deal with relatively small sets of points in two- or three-dimensional space.
We present rotation- and permutation-equivariant architectures for deep learning on these small point clouds.
We demonstrate the usefulness of these architectures by training models to solve sample problems relevant to physics, chemistry, and biology.
arXiv Detail & Related papers (2021-10-05T22:52:12Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.