論文の概要: Demo: SGCode: A Flexible Prompt-Optimizing System for Secure Generation of Code
- arxiv url: http://arxiv.org/abs/2409.07368v1
- Date: Wed, 11 Sep 2024 15:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 13:53:24.306872
- Title: Demo: SGCode: A Flexible Prompt-Optimizing System for Secure Generation of Code
- Title(参考訳): デモ: SGCode: セキュアなコード生成のためのフレキシブルなプロンプト最適化システム
- Authors: Khiem Ton, Nhi Nguyen, Mahmoud Nazzal, Abdallah Khreishah, Cristian Borcea, NhatHai Phan, Ruoming Jin, Issa Khalil, Yelong Shen,
- Abstract要約: 本稿では,大規模言語モデル(LLM)でセキュアなコードを生成するフレキシブルなプロンプト最適化システムであるSGCodeを紹介する。
SGCodeは、モデルユーティリティ、セキュアコード生成、システムコストのトレードオフに関する洞察を得るために、パブリックツールとして実用的であることを示す。
- 参考スコア(独自算出の注目度): 21.376863393042022
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces SGCode, a flexible prompt-optimizing system to generate secure code with large language models (LLMs). SGCode integrates recent prompt-optimization approaches with LLMs in a unified system accessible through front-end and back-end APIs, enabling users to 1) generate secure code, which is free of vulnerabilities, 2) review and share security analysis, and 3) easily switch from one prompt optimization approach to another, while providing insights on model and system performance. We populated SGCode on an AWS server with PromSec, an approach that optimizes prompts by combining an LLM and security tools with a lightweight generative adversarial graph neural network to detect and fix security vulnerabilities in the generated code. Extensive experiments show that SGCode is practical as a public tool to gain insights into the trade-offs between model utility, secure code generation, and system cost. SGCode has only a marginal cost compared with prompting LLMs. SGCode is available at: http://3.131.141.63:8501/.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)でセキュアなコードを生成するための,フレキシブルなプロンプト最適化システムであるSGCodeを紹介する。
SGCodeは、最近のプロンプト最適化アプローチを、フロントエンドとバックエンドAPIを通じてアクセス可能な統一システムでLLMと統合し、ユーザが利用できるようにしている。
1) 脆弱性のないセキュアなコードを生成する。
2【セキュリティ分析の見直し及び共有】
3) モデルとシステムのパフォーマンスに関する洞察を提供しながら、迅速な最適化アプローチから別のアプローチに簡単に切り替えることができます。
これは、LLMとセキュリティツールを軽量な生成逆グラフニューラルネットワークと組み合わせて、生成されたコードのセキュリティ脆弱性を検出し、修正することで、プロンプトを最適化するアプローチです。
大規模な実験によると、SGCodeは、モデルユーティリティ、セキュアなコード生成、システムコストの間のトレードオフに関する洞察を得るために、公開ツールとして実用的である。
SGCode は LLM のプロンプトに比べて限界的なコストしかかからない。
SGCode は http://3.131.141.63:8501/ で利用可能である。
関連論文リスト
- ProSec: Fortifying Code LLMs with Proactive Security Alignment [14.907702430331803]
コード固有の大規模言語モデル(LLM)のセキュリティは、まだ未調査のままである。
コードLLMをセキュアなコーディングプラクティスと整合させるために設計された,新たなセキュリティアライメントアプローチであるProSecを提案する。
実験の結果、ProSecでトレーニングされたモデルは以前の研究よりも29.2%から35.5%安全であることが示されている。
論文 参考訳(メタデータ) (2024-11-19T22:00:01Z) - From Solitary Directives to Interactive Encouragement! LLM Secure Code Generation by Natural Language Prompting [24.27542373791212]
SecCodeは、テキストのみのNLプロンプトでセキュアなコード生成のために、革新的なインタラクティブな励ましプロンプト(EP)技術を活用するフレームワークである。
1) NL Prompts を用いたコード生成,2) コード脆弱性の検出と修正,提案したプロモーションプロンプトの利用,3) 脆弱性のクロスチェッキングとコードセキュリティリファインメント。
論文 参考訳(メタデータ) (2024-10-18T09:32:08Z) - PromSec: Prompt Optimization for Secure Generation of Functional Source Code with Large Language Models (LLMs) [4.2913589403278225]
LLM(Large Language Model)は、高品質なソースコードを生成するために使われる。
LLMは、安全でないオープンソースデータのトレーニングのために、セキュリティ上の脆弱性をしばしば導入する。
本稿では,セキュアかつ機能的なコード生成のためのプロム最適化アルゴリズムであるPromSecを紹介する。
論文 参考訳(メタデータ) (2024-09-19T12:14:10Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - A Decoding Acceleration Framework for Industrial Deployable LLM-based Recommender Systems [49.588316022381385]
本稿では,LLMベースのレコメンデーション(DARE)のためのデコード高速化フレームワークを提案し,検索効率を向上させるためのカスタマイズされた検索プールと,ドラフトトークンの受け入れ率を高めるための緩和検証を提案する。
DAREは大規模な商用環境でのオンライン広告シナリオにデプロイされ、ダウンストリームのパフォーマンスを維持しながら3.45倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-08-11T02:31:13Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
大規模言語モデル(LLM)の安全性を高める既存の手法は、LLMエージェントに直接転送することはできない。
我々は、他のLLMエージェントに対するガードレールとして、最初のLLMエージェントであるGuardAgentを提案する。
GuardAgentは、1)提供されたガードリクエストを分析してタスクプランを作成し、2)タスクプランに基づいてガードレールコードを生成し、APIを呼び出すか、または外部エンジンを使用してコードを実行する。
論文 参考訳(メタデータ) (2024-06-13T14:49:26Z) - Constrained Decoding for Secure Code Generation [9.007821185927277]
本稿では、コードLLMがセキュアかつ正しいコードを生成する能力を測定するための新しいベンチマークであるCodeGuard+を紹介する。
我々は,現在最先端の防御技術であるプレフィックスチューニングが,セキュアなコードを生成するが機能的正当性を犠牲にしているため,従来考えられていたほど強力ではないことを示す。
セキュアなコードを生成するための制約付き復号法を提案する。
論文 参考訳(メタデータ) (2024-04-30T21:52:19Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Can LLMs Patch Security Issues? [1.3299507495084417]
LLM(Large Language Models)は、コード生成に優れた習熟度を示している。
LLMは人間と弱点を共有している。
我々は、LLMが生成した脆弱性のあるコードを自動的に洗練するフィードバック駆動セキュリティパッチング(FDSP)を提案する。
論文 参考訳(メタデータ) (2023-11-13T08:54:37Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。