Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation
- URL: http://arxiv.org/abs/2410.22790v1
- Date: Wed, 30 Oct 2024 08:09:33 GMT
- Title: Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation
- Authors: Chengkai Huang, Shoujin Wang, Xianzhi Wang, Lina Yao,
- Abstract summary: Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users.
Most of existing SRSs often model users' single low-level preference based on item ID information.
We propose a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics.
- Score: 23.055217651991537
- License:
- Abstract: Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level preference revealed by item attribute information, such as item category. Furthermore, they often utilize limited sequence context information to predict the next item while overlooking richer inter-item semantic relations. To this end, in this paper, we proposed a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics for accurate sequential recommendation. Specifically, in the framework, a novel dual-transformer module and a novel dual contrastive learning scheme have been designed to discriminatively learn users' low- and high-level preference and to effectively enhance both low- and high-level preference learning respectively. In addition, a novel semantics-enhanced context embedding module has been devised to generate more informative context embedding for further improving the recommendation performance. Extensive experiments on six real-world datasets have demonstrated both the superiority of our proposed method over the state-of-the-art ones and the rationality of our design.
Related papers
- Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Frame Order Matters: A Temporal Sequence-Aware Model for Few-Shot Action Recognition [14.97527336050901]
We propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR)
It incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings.
Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
arXiv Detail & Related papers (2024-08-22T15:13:27Z) - Hierarchical Reinforcement Learning for Modeling User Novelty-Seeking
Intent in Recommender Systems [26.519571240032967]
We propose a novel hierarchical reinforcement learning-based method to model the hierarchical user novelty-seeking intent.
We further incorporate diversity and novelty-related measurement in the reward function of the hierarchical RL (HRL) agent to encourage user exploration.
arXiv Detail & Related papers (2023-06-02T12:02:23Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - Modeling User Behaviour in Research Paper Recommendation System [8.980876474818153]
A user intention model is proposed based on deep sequential topic analysis.
The model predicts a user's intention in terms of the topic of interest.
The proposed approach introduces a new road map to model a user activity suitable for the design of a research paper recommendation system.
arXiv Detail & Related papers (2021-07-16T11:31:03Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.