Laser Activation of Single Group-IV Colour Centres in Diamond
- URL: http://arxiv.org/abs/2409.07421v1
- Date: Wed, 11 Sep 2024 17:07:56 GMT
- Title: Laser Activation of Single Group-IV Colour Centres in Diamond
- Authors: Xingrui Cheng, Andreas Thurn, Guangzhao Chen, Gareth S. Jones, Maddison Coke, Mason Adshead, Cathryn P. Michaels, Osman Balci, Andrea C. Ferrari, Mete Atatüre, Richard Curry, Jason M. Smith, Patrick S. Salter, Dorian A. Gangloff,
- Abstract summary: Spin-photon interfaces based on group-IV colour centres in diamond offer a promising platform for quantum networks.
Key challenge in the field is realizing precise single-defect positioning and activation.
We demonstrate a two-step fabrication method for tin vacancy (SnV-) centres that uses site-controlled ion implantation.
- Score: 0.3170091398045088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-photon interfaces based on group-IV colour centres in diamond offer a promising platform for quantum networks. A key challenge in the field is realizing precise single-defect positioning and activation, which is crucial for scalable device fabrication. Here we address this problem by demonstrating a two-step fabrication method for tin vacancy (SnV-) centres that uses site-controlled ion implantation followed by local femtosecond laser annealing with in-situ spectral monitoring. The ion implantation is performed with sub-50 nm resolution and a dosage that is controlled from hundreds of ions down to single ions per site, limited by Poissonian statistics. Using this approach, we successfully demonstrate site-selective creation and modification of single SnV- centres. The technique opens a window onto materials tuning at the single defect level, and provides new insight into defect structures and dynamics during the annealing process. While demonstrated for SnV- centres, this versatile approach can be readily generalised to other implanted colour centres in diamond and wide-bandgap materials.
Related papers
- Photoactivation of color centers induced by laser irradiation in ion-implanted diamond [0.0]
Split-vacancy color centers in diamond are promising platforms for the implementation of photonic quantum technologies.
Technology uptake will require the availability of reliable methods for the controlled, large scale production of localized individual photon emitters.
arXiv Detail & Related papers (2024-09-10T09:29:18Z) - Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - Efficient fabrication of high-density ensembles of color centers via ion
implantation on a hot diamond substrate [0.0]
Nitrogen-Vacancy (NV) centers in diamond are promising systems for quantum technologies.
We show an approach to increase the density of NV centers upon the high-fluence implantation of MeV N2+ ions on a hot target substrate.
arXiv Detail & Related papers (2023-10-30T13:26:24Z) - Graphene-Enhanced Single Ion Detectors for Deterministic Near-Surface
Dopant Implantation in Diamond [45.887393876309375]
Most demanding application for a large-scale quantum computer will require ordered arrays.
By configuring an electronic-grade diamond substrate with a biased surface graphene electrode connected to charge-sensitive electronics, it is possible to demonstrate single ion implantation for ions stopping between 30 and 130nm deep from a typical ion source.
This allows the construction of ordered arrays of single atoms with associated colour centres that paves the way for the fabrication of deterministic colour center networks in a monolithic device.
arXiv Detail & Related papers (2023-06-13T02:16:02Z) - Microscopic study of optically-stable, coherent color centers in diamond
generated by high-temperature annealing [6.8606674775322185]
Single color centers in solid have emerged as promising physical platforms for quantum information science.
We propose and demonstrate a distinct high-temperature annealing (HTA) approach for creating high-quality nitrogen vacancy (NV) centers in implantation-free diamonds.
arXiv Detail & Related papers (2022-08-20T14:20:19Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Tunable and Transferable Diamond Membranes for Integrated Quantum
Technologies [48.634695885442504]
nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth.
Within 110 nm thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition linewidths as low as 125 MHz.
This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
arXiv Detail & Related papers (2021-09-23T17:18:39Z) - Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically
on Chip-Compatible Substrates [51.112488102081734]
Two-dimensional hexagonal boron nitride (hBN) hosts bright room-temperature single-photon emitters (SPEs)
Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with an atomic force microscope (AFM) tip.
arXiv Detail & Related papers (2021-06-28T20:58:02Z) - Scalable creation of silicon-vacancy color centers in diamond by ion
implantation through a 1-$\mu$m pinhole [0.0]
Controlled creation of quantum emitters in diamond represents a major research effort in the fabrication of single-photon devices.
We present the scalable production of silicon-vacancy (SiV) color centers in single-crystal diamond by ion implantation.
arXiv Detail & Related papers (2021-01-29T21:30:31Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.