論文の概要: Contrastive Learning-based User Identification with Limited Data on Smart Textiles
- arxiv url: http://arxiv.org/abs/2409.07488v1
- Date: Fri, 6 Sep 2024 13:29:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 20:50:00.496736
- Title: Contrastive Learning-based User Identification with Limited Data on Smart Textiles
- Title(参考訳): スマートテキスタイル上の限られたデータを用いたコントラスト学習に基づくユーザ識別
- Authors: Yunkang Zhang, Ziyu Wu, Zhen Liang, Fangting Xie, Quan Wan, Mingjie Zhao, Xiaohui Cai,
- Abstract要約: 圧力に敏感なスマートテキスタイルは、医療、スポーツ監視、インテリジェントホームの分野で広く応用されている。
コントラスト学習に基づく新しいユーザ識別手法を提案する。
我々の平均認識精度は79.05%に達し、最高のベースラインモデルよりも2.62%向上した。
- 参考スコア(独自算出の注目度): 0.7224497621488286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pressure-sensitive smart textiles are widely applied in the fields of healthcare, sports monitoring, and intelligent homes. The integration of devices embedded with pressure sensing arrays is expected to enable comprehensive scene coverage and multi-device integration. However, the implementation of identity recognition, a fundamental function in this context, relies on extensive device-specific datasets due to variations in pressure distribution across different devices. To address this challenge, we propose a novel user identification method based on contrastive learning. We design two parallel branches to facilitate user identification on both new and existing devices respectively, employing supervised contrastive learning in the feature space to promote domain unification. When encountering new devices, extensive data collection efforts are not required; instead, user identification can be achieved using limited data consisting of only a few simple postures. Through experimentation with two 8-subject pressure datasets (BedPressure and ChrPressure), our proposed method demonstrates the capability to achieve user identification across 12 sitting scenarios using only a dataset containing 2 postures. Our average recognition accuracy reaches 79.05%, representing an improvement of 2.62% over the best baseline model.
- Abstract(参考訳): 圧力に敏感なスマートテキスタイルは、医療、スポーツ監視、インテリジェントホームの分野で広く応用されている。
圧力センサアレイを内蔵したデバイスの統合により、総合的なシーンカバレッジとマルチデバイス統合が可能になることが期待されている。
しかし、この文脈における基本的な機能であるアイデンティティ認識の実装は、異なるデバイスにまたがる圧力分布の変化により、デバイス固有の広範なデータセットに依存している。
この課題に対処するために,コントラスト学習に基づく新しいユーザ識別手法を提案する。
我々は,機能空間における教師付きコントラスト学習を用いて,新しいデバイスと既存デバイスの両方のユーザ識別を容易にする2つの並列ブランチを設計する。
新しいデバイスに遭遇する際には、広範囲なデータ収集の努力は不要である。
BedPressureとChrPressureの2つの8オブジェクトの圧力データセットを用いて実験を行い、本手法は2つの姿勢を含むデータセットのみを用いて、12の座ったシナリオでユーザ識別を実現する能力を示す。
我々の平均認識精度は79.05%に達し、最高のベースラインモデルよりも2.62%向上した。
関連論文リスト
- Joint Identity Verification and Pose Alignment for Partial Fingerprints [33.05877729161858]
本稿では,部分指紋ペアの協調識別とポーズアライメントのための新しいフレームワークを提案する。
本手法は,部分的指紋認証と相対的ポーズ推定の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-07T02:45:50Z) - AdaFPP: Adapt-Focused Bi-Propagating Prototype Learning for Panoramic Activity Recognition [51.24321348668037]
パノラマ活動認識(PAR)は、パノラマシーンにおいて複数の人が行う多粒度行動を特定することを目的としている。
以前の方法は、トレーニングと推論において手動で注釈付き検出ボックスに依存しており、より実用的なデプロイメントを妨げる。
本研究では,パノラマ活動シーンにおける個人,グループ,グローバルな活動を共同で認識するための,適応型バイプロパゲーティング・プロトタイプ学習(AdaFPP)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-04T01:53:22Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
マルチフィンガーハンドとバイソタクティブルデータを用いたバイマニアルシステムを用いて,人間の実演からの学習を探索する。
以上の結果から,バイスオタクティブルデータからの両指多指操作における有望な進歩が示唆された。
論文 参考訳(メタデータ) (2024-04-25T17:59:41Z) - Bridging the Gap Between End-to-End and Two-Step Text Spotting [88.14552991115207]
ブリッジングテキストスポッティングは、2段階のメソッドでエラーの蓄積と最適化性能の問題を解決する新しいアプローチである。
提案手法の有効性を広範囲な実験により実証する。
論文 参考訳(メタデータ) (2024-04-06T13:14:04Z) - FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition [0.0]
本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
論文 参考訳(メタデータ) (2023-11-13T21:31:07Z) - Active Reinforcement Learning for Personalized Stress Monitoring in
Everyday Settings [4.4353357514621745]
本稿では,日常の環境をターゲットとしたウェアラブルセンサを用いた微粒な応力検出問題について考察する。
我々は,生理的信号を定期的に捉え,リアルタイムで処理する多層センサエッジクラウドプラットフォームを開発した。
提案手法は,ユーザからのクエリを88%,32%削減して,望ましい検出性能を実現する。
論文 参考訳(メタデータ) (2023-04-28T22:09:19Z) - Multimodal Multi-User Surface Recognition with the Kernel Two-Sample
Test [15.051737123188174]
分類タスクに不均一なデータソースを扱えるフレームワークを提案する。
我々のデータ逆データアプローチは,高次元空間における分布の差分を自動的に定量化する。
我々は108のサーフェスクラスを持つ標準マルチユーザーデータセットで97.2%の精度を達成し、タスクのより難しいバージョンでは最先端の機械学習アルゴリズムを6%上回った。
論文 参考訳(メタデータ) (2023-03-08T22:58:55Z) - Multi-Stage Spatio-Temporal Aggregation Transformer for Video Person
Re-identification [78.08536797239893]
本稿では,2つの新しいプロキシ埋め込みモジュールを設計したMSTAT(Multi-Stage Space-Temporal Aggregation Transformer)を提案する。
MSTATは、属性関連、アイデンティティ関連、および属性関連情報をビデオクリップからエンコードする3つのステージから構成される。
MSTATは様々な標準ベンチマークで最先端の精度を達成できることを示す。
論文 参考訳(メタデータ) (2023-01-02T05:17:31Z) - Efficient aggregation of face embeddings for decentralized face
recognition deployments (extended version) [0.7349727826230862]
バイオメトリックスは、最もプライバシーに敏感なデータの一つだ。プライバシーを重視するユビキタス認証システムは、分散化されたアプローチを優先している。
本稿では,異なるデータセットの広範囲な解析に基づいて,顔認識に使用される埋め込みを効率的に集約する方法を提案する。
論文 参考訳(メタデータ) (2022-12-20T09:28:25Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
歩行者検出と識別サブタスクを1つのネットワークで処理するワンステップ方式を開発しました。
現在のワンステップアプローチには2つの大きな課題があります。
本稿では,これらの問題を解決するために,分離メモリ強化ネットワーク(DMRNet)を提案する。
論文 参考訳(メタデータ) (2021-02-22T06:19:45Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
センサデータとセンサモデルの間に留まるパーソナルエッジプラットフォームであるSensiXを紹介する。
動作および音声に基づくマルチデバイスセンシングシステムの開発において,その有効性を示す。
評価の結果,SensiXは3mWのオーバヘッドを犠牲にして,全体の精度が7~13%向上し,環境のダイナミクスが最大30%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-04T23:06:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。