論文の概要: FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2311.07765v1
- Date: Mon, 13 Nov 2023 21:31:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-11-15 16:22:42.388180
- Title: FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition
- Title(参考訳): FedOpenHAR:センサに基づくヒューマンアクティビティ認識のためのフェデレーションマルチタスク変換学習
- Authors: Egemen \.I\c{s}g\"uder and \"Ozlem Durmaz \.Incel
- Abstract要約: 本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion sensors integrated into wearable and mobile devices provide valuable
information about the device users. Machine learning and, recently, deep
learning techniques have been used to characterize sensor data. Mostly, a
single task, such as recognition of activities, is targeted, and the data is
processed centrally at a server or in a cloud environment. However, the same
sensor data can be utilized for multiple tasks and distributed machine-learning
techniques can be used without the requirement of the transmission of data to a
centre. This paper explores Federated Transfer Learning in a Multi-Task manner
for both sensor-based human activity recognition and device position
identification tasks. The OpenHAR framework is used to train the models, which
contains ten smaller datasets. The aim is to obtain model(s) applicable for
both tasks in different datasets, which may include only some label types.
Multiple experiments are carried in the Flower federated learning environment
using the DeepConvLSTM architecture. Results are presented for federated and
centralized versions under different parameters and restrictions. By utilizing
transfer learning and training a task-specific and personalized federated
model, we obtained a similar accuracy with training each client individually
and higher accuracy than a fully centralized approach.
- Abstract(参考訳): ウェアラブルやモバイルデバイスに統合されたモーションセンサーは、デバイスユーザに関する貴重な情報を提供する。
機械学習と最近では、センサーデータの特徴付けにディープラーニング技術が使われている。
主に、アクティビティの認識のような単一のタスクをターゲットとし、データはサーバーまたはクラウド環境で中央的に処理される。
しかし、同じセンサデータを複数のタスクに利用することができ、分散機械学習技術はセンタへのデータ送信を必要とせずに使用できる。
本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
その目的は、異なるデータセットにおける両方のタスクに適用可能なモデルを得ることである。
DeepConvLSTMアーキテクチャを用いて、フラワーフェデレーション学習環境で複数の実験を行う。
結果は、異なるパラメータと制限の下で、連合バージョンと集中バージョンで示されます。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
関連論文リスト
- Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - ColloSSL: Collaborative Self-Supervised Learning for Human Activity
Recognition [9.652822438412903]
堅牢なヒューマンアクティビティ認識モデル(HAR)のトレーニングにおける大きなボトルネックは、大規模ラベル付きセンサーデータセットの必要性である。
大量のセンサデータをラベル付けすることは高価な作業であるため、教師なしおよび半教師なしの学習技術が出現している。
複数のデバイスから収集されたラベルのないデータを活用するコラボレーティブ・セルフスーパーバイズ・ラーニング(ColloSSL)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-01T21:05:05Z) - Multimodal Federated Learning [9.081857621783811]
IoTデバイスを備えたスマートホームなど、多くのアプリケーションでは、クライアント上のローカルデータは、さまざまなモダリティから生成される。
既存のフェデレーション学習システムは、単一のモダリティからのローカルデータのみを扱うため、システムのスケーラビリティが制限される。
本稿では,クライアント上で異なるローカルデータモダリティから共有あるいは相関表現を抽出するよう,オートエンコーダを訓練するマルチモーダル・セミ教師付きフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-10T12:32:46Z) - Federated Learning-based Active Authentication on Mobile Devices [98.23904302910022]
モバイルデバイス上のユーザアクティブ認証は、デバイスセンサ情報に基づいて登録ユーザを正しく認識できるモデルを学ぶことを目的としている。
Federated Active Authentication (FAA) と呼ばれる新しいユーザーアクティブ認証トレーニングを提案します。
既存のFL/SL法は,同質に分散するデータに依存するため,FAAにとって最適ではないことを示す。
論文 参考訳(メタデータ) (2021-04-14T22:59:08Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input [75.05709030478073]
本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置を含む複数のタップ特性を同時に認識することができる。
論文 参考訳(メタデータ) (2021-02-18T00:45:41Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
被験者やデバイス間で共有される共通情報を抽出する不変特徴学習フレームワーク(IFLF)を提案する。
実験により、IFLFは、一般的なオープンデータセットと社内データセットをまたいだ主題とデバイスディバージョンの両方を扱うのに効果的であることが示された。
論文 参考訳(メタデータ) (2020-12-14T21:56:17Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
デバイス上でのフェデレーション学習は、分散的で協調的な機械学習に効果的なアプローチであることが証明されている。
本稿では,複数の活動にまたがる重なり合う情報ゲインを利用したラベルに基づくアグリゲーションのためのフレームワークを提案する。
Raspberry Pi 2上のHeterogeneity Human Activity Recognition (HHAR)データセットによる経験的評価は、決定論的精度が少なくとも11.01%向上したことを示している。
論文 参考訳(メタデータ) (2020-12-04T11:44:17Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
我々は、生の知覚データから表現や特徴学習のためのSense and Learnというフレームワークを提案する。
これは、面倒なラベル付けプロセスに人間が関与することなく、注釈のないデータから、高レベルで広範囲に有用な特徴を学習できる補助的なタスクで構成されている。
提案手法は、教師付きアプローチと競合する結果を達成し、ネットワークを微調整し、ほとんどの場合、下流タスクを学習することでギャップを埋める。
論文 参考訳(メタデータ) (2020-09-28T11:57:43Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。