A Survey of Anomaly Detection in In-Vehicle Networks
- URL: http://arxiv.org/abs/2409.07505v1
- Date: Wed, 11 Sep 2024 11:45:18 GMT
- Title: A Survey of Anomaly Detection in In-Vehicle Networks
- Authors: Övgü Özdemir, M. Tuğberk İşyapar, Pınar Karagöz, Klaus Werner Schmidt, Demet Demir, N. Alpay Karagöz,
- Abstract summary: Problems that may occur in the vehicle's physical parts or malicious attacks may cause anomalies in the CAN traffic, impairing the correct vehicle operation.
This paper reviews the research on anomaly detection for in-vehicle networks.
Our main focus is the evaluation of methods used for CAN bus anomaly detection together with the datasets used in such analysis.
- Score: 2.440962475284596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern vehicles are equipped with Electronic Control Units (ECU) that are used for controlling important vehicle functions including safety-critical operations. ECUs exchange information via in-vehicle communication buses, of which the Controller Area Network (CAN bus) is by far the most widespread representative. Problems that may occur in the vehicle's physical parts or malicious attacks may cause anomalies in the CAN traffic, impairing the correct vehicle operation. Therefore, the detection of such anomalies is vital for vehicle safety. This paper reviews the research on anomaly detection for in-vehicle networks, more specifically for the CAN bus. Our main focus is the evaluation of methods used for CAN bus anomaly detection together with the datasets used in such analysis. To provide the reader with a more comprehensive understanding of the subject, we first give a brief review of related studies on time series-based anomaly detection. Then, we conduct an extensive survey of recent deep learning-based techniques as well as conventional techniques for CAN bus anomaly detection. Our comprehensive analysis delves into anomaly detection algorithms employed in in-vehicle networks, specifically focusing on their learning paradigms, inherent strengths, and weaknesses, as well as their efficacy when applied to CAN bus datasets. Lastly, we highlight challenges and open research problems in CAN bus anomaly detection.
Related papers
- AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN) [4.081467217340597]
The Controller Area Network (CAN) bus is a central system for managing in-vehicle communication between the electronic control units (ECUs)
CAN protocol poses security challenges due to inherent vulnerabilities, lacking encryption and authentication, which, combined with an expanding attack surface, necessitates robust security measures.
This paper considers the latest ROAD dataset, containing stealthy and sophisticated injections.
arXiv Detail & Related papers (2024-08-30T12:26:23Z) - A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
We present an assessment framework that allows for reproducible, comparable, and rapid evaluation of anomaly detection algorithms.
We evaluate exemplary detection mechanisms and reveal how the detection performance is influenced by different combinations of TSN traffic flows and anomaly types.
arXiv Detail & Related papers (2024-05-02T14:29:42Z) - GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus [0.0]
We present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques.
Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall.
Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles.
arXiv Detail & Related papers (2023-09-18T21:42:09Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - A Temporal Anomaly Detection System for Vehicles utilizing Functional
Working Groups and Sensor Channels [0.0]
We introduce the Vehicle Performance, Reliability, and Operations dataset and use it to create a multi-phased approach to anomaly detection.
Our anomaly detection system can achieve 96% detection accuracy and accurately predicts 91% of true anomalies.
arXiv Detail & Related papers (2022-09-14T14:33:07Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - Self-awareness in Intelligent Vehicles: Experience Based Abnormality
Detection [4.721146043492144]
This paper introduces a novel method to detect abnormalities based on internal cross-correlation parameters of the vehicle.
It is possible to train a Dynamic Bayesian Network (DBN) model to automatically evaluate and detect when the vehicle is potentially misbehaving.
arXiv Detail & Related papers (2020-10-28T16:08:54Z) - A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State
Analysis [164.93739293097605]
EEG is proven to be one of the most effective methods for driver state monitoring and human error detection.
This paper discusses EEG-based driver state detection systems and their corresponding analysis algorithms over the last three decades.
It is concluded that the current EEG-based driver state monitoring algorithms are promising for safety applications.
arXiv Detail & Related papers (2020-08-25T18:21:35Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.