論文の概要: Machine Learning and Constraint Programming for Efficient Healthcare Scheduling
- arxiv url: http://arxiv.org/abs/2409.07547v1
- Date: Wed, 11 Sep 2024 18:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 20:40:16.900680
- Title: Machine Learning and Constraint Programming for Efficient Healthcare Scheduling
- Title(参考訳): 効率的な医療スケジューリングのための機械学習と制約プログラミング
- Authors: Aymen Ben Said, Malek Mouhoub,
- Abstract要約: 看護スケジューリング問題(NSP)に取り組む
暗黙の問題解決アプローチでは、学習パターンに埋め込まれる可能性のある制約や目的を通じて、過去のデータを使って新しいソリューションを学習し、生成する機械学習手法を頼りにしています。
提案手法では, 制約や目的が具体的に見えるものではないことを考慮し, 暗黙的アプローチに関する不確実性を補うために, 制約満足度問題フレームワークを用いてまずNSPをモデル化する明示的アプローチを提案する。
我々の暗黙的アプローチは生成したソリューションの実現可能性や最適性を保証するものではないため、データ駆動型アプローチを提案し、NSPを制約として受動的に学習する。
- 参考スコア(独自算出の注目度): 0.8287206589886879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving combinatorial optimization problems involve satisfying a set of hard constraints while optimizing some objectives. In this context, exact or approximate methods can be used. While exact methods guarantee the optimal solution, they often come with an exponential running time as opposed to approximate methods that trade the solutions quality for a better running time. In this context, we tackle the Nurse Scheduling Problem (NSP). The NSP consist in assigning nurses to daily shifts within a planning horizon such that workload constraints are satisfied while hospitals costs and nurses preferences are optimized. To solve the NSP, we propose implicit and explicit approaches. In the implicit solving approach, we rely on Machine Learning methods using historical data to learn and generate new solutions through the constraints and objectives that may be embedded in the learned patterns. To quantify the quality of using our implicit approach in capturing the embedded constraints and objectives, we rely on the Frobenius Norm, a quality measure used to compute the average error between the generated solutions and historical data. To compensate for the uncertainty related to the implicit approach given that the constraints and objectives may not be concretely visible in the produced solutions, we propose an alternative explicit approach where we first model the NSP using the Constraint Satisfaction Problem (CSP) framework. Then we develop Stochastic Local Search methods and a new Branch and Bound algorithm enhanced with constraint propagation techniques and variables/values ordering heuristics. Since our implicit approach may not guarantee the feasibility or optimality of the generated solution, we propose a data-driven approach to passively learn the NSP as a constraint network. The learned constraint network, formulated as a CSP, will then be solved using the methods we listed earlier.
- Abstract(参考訳): 組合せ最適化問題の解決には、いくつかの目的を最適化しながら、一連の制約を満たすことが含まれる。
この文脈では、正確なあるいは近似的な手法が用いられる。
正確な方法では最適解が保証されるが、ソリューションの品質をよりよい実行時間と交換する近似的な方法とは対照的に、指数関数的な実行時間を持つことが多い。
この文脈では、NSP(Nurse Scheduling Problem)に取り組む。
NSPは、病院のコストと看護師の選好が最適化されている間、作業負荷の制約が満たされるように、計画の地平内での日々のシフトに看護師を割り当てる。
NSP を解決するために,暗黙的かつ明示的なアプローチを提案する。
暗黙の問題解決アプローチでは、学習パターンに埋め込まれる可能性のある制約や目的を通じて、過去のデータを使って新しいソリューションを学習し、生成する機械学習手法を頼りにしています。
組込み制約や目的を捉えるために暗黙のアプローチを用いる場合の質を定量化するために、生成した解と履歴データの間の平均誤差を計算するのに使用されるフロベニウス・ノーム(Frobenius Norm)に依存する。
提案手法では, 制約や目的が具体的に見えるものではないことを考慮し, 暗黙的アプローチに関する不確実性を補うために, 制約満足度問題(CSP)フレームワークを用いてまずNSPをモデル化する代替的明示的アプローチを提案する。
次に,確率的局所探索法と,制約伝搬法と変数/値順序ヒューリスティックスにより拡張された新しい分岐境界アルゴリズムを開発した。
我々の暗黙的アプローチは生成したソリューションの実現可能性や最適性を保証するものではないため、制約ネットワークとしてNSPを受動的に学習するデータ駆動型アプローチを提案する。
学習された制約ネットワークは、CSPとして定式化され、先にリストしたメソッドを使って解決されます。
関連論文リスト
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
制約のある最適化問題は、在庫管理電力グリッドのような様々なエンジニアリングシステムで発生する。
本研究では,ベイジアンネットワーク(BNN)を用いて,制限されたデータと制限されたモデル時間の下での制約付き最適化問題の解法を提案する。
提案手法は,従来のBNNおよびディープニューラルネットワーク(DNN)アーキテクチャよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-04T02:10:20Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - Threshold-aware Learning to Generate Feasible Solutions for Mixed
Integer Programs [5.28005598366543]
ニューラルダイビング(ND)は、混合プログラム(MIP)における部分的な離散変数代入を生成する学習ベースのアプローチの1つである。
カバー範囲を最適化するためのポストホック法と学習に基づくアプローチを導入する。
実験結果から、ニューラルネットワークを学習して高品質な実現可能なソリューションを見つけるためのカバレッジを推定することで、NeurIPS ML4COデータセットの最先端のパフォーマンスが達成されることが示された。
論文 参考訳(メタデータ) (2023-08-01T07:03:16Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
本稿では,混合整数線形最適化問題に着目したCCL手法を提案する。
CCLは線形化可能な機械学習モデルを使用して、学習変数の条件量子を推定する。
実践者が使用するオープンアクセスソフトウェアが開発されている。
論文 参考訳(メタデータ) (2022-07-08T11:54:39Z) - Solving the capacitated vehicle routing problem with timing windows
using rollouts and MAX-SAT [4.873362301533824]
車両ルーティングはNPハード最適化問題のよく知られたクラスである。
最近の強化学習の取り組みは有望な代替手段である。
本稿では,強化学習,政策展開,満足度を組み合わせたハイブリッドアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-14T06:27:09Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z) - Teaching the Old Dog New Tricks: Supervised Learning with Constraints [18.88930622054883]
機械学習に制約サポートを追加することは、データ駆動型AIシステムにおいて際立った問題に対処する可能性がある。
既存のアプローチでは、MLトレーニングに制約付き最適化手法を適用し、モデル設計を調整することによって制約満足度を強制するか、あるいは出力を修正するために制約を使用するのが一般的である。
そこで本研究では,教師付きML手法に対する制約満足度を,最先端制約解決器の直接利用により,それぞれ異なる,補完的な制約満足度に基づく戦略について検討する。
論文 参考訳(メタデータ) (2020-02-25T09:47:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。