DS-ViT: Dual-Stream Vision Transformer for Cross-Task Distillation in Alzheimer's Early Diagnosis
- URL: http://arxiv.org/abs/2409.07584v1
- Date: Wed, 11 Sep 2024 19:31:01 GMT
- Title: DS-ViT: Dual-Stream Vision Transformer for Cross-Task Distillation in Alzheimer's Early Diagnosis
- Authors: Ke Chen, Yifeng Wang, Yufei Zhou, Haohan Wang,
- Abstract summary: We propose a dual-stream pipeline that facilitates cross-task and cross-architecture knowledge sharing.
Our approach introduces a dual-stream embedding module that unifies feature representations from segmentation and classification models.
We validated our method on multiple 3D datasets for Alzheimer's disease diagnosis, demonstrating significant improvements in classification performance.
- Score: 20.178933135186618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of Alzheimer's disease diagnosis, segmentation and classification tasks are inherently interconnected. Sharing knowledge between models for these tasks can significantly improve training efficiency, particularly when training data is scarce. However, traditional knowledge distillation techniques often struggle to bridge the gap between segmentation and classification due to the distinct nature of tasks and different model architectures. To address this challenge, we propose a dual-stream pipeline that facilitates cross-task and cross-architecture knowledge sharing. Our approach introduces a dual-stream embedding module that unifies feature representations from segmentation and classification models, enabling dimensional integration of these features to guide the classification model. We validated our method on multiple 3D datasets for Alzheimer's disease diagnosis, demonstrating significant improvements in classification performance, especially on small datasets. Furthermore, we extended our pipeline with a residual temporal attention mechanism for early diagnosis, utilizing images taken before the atrophy of patients' brain mass. This advancement shows promise in enabling diagnosis approximately six months earlier in mild and asymptomatic stages, offering critical time for intervention.
Related papers
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Toward Robust Early Detection of Alzheimer's Disease via an Integrated Multimodal Learning Approach [5.9091823080038814]
Alzheimer's Disease (AD) is a complex neurodegenerative disorder marked by memory loss, executive dysfunction, and personality changes.
This study introduces an advanced multimodal classification model that integrates clinical, cognitive, neuroimaging, and EEG data.
arXiv Detail & Related papers (2024-08-29T08:26:00Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Adapter Learning in Pretrained Feature Extractor for Continual Learning
of Diseases [66.27889778566734]
Currently intelligent diagnosis systems lack the ability of continually learning to diagnose new diseases once deployed.
In particular, updating an intelligent diagnosis system with training data of new diseases would cause catastrophic forgetting of old disease knowledge.
An adapter-based Continual Learning framework called ACL is proposed to help effectively learn a set of new diseases.
arXiv Detail & Related papers (2023-04-18T15:01:45Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
This paper proposes a transfer learning method using class decomposition to detect Alzheimer's disease from sMRI images.
The proposed model achieved state-of-the-art performance in the Alzheimer's disease (AD) vs mild cognitive impairment (MCI) vs cognitively normal (CN) classification task with a 3% increase in accuracy from what is reported in the literature.
arXiv Detail & Related papers (2023-01-31T09:44:52Z) - Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer
Classification [4.179845212740817]
We introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis.
Our framework allows for higher-order relations among multi-modal imaging and non-imaging data.
We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis.
arXiv Detail & Related papers (2022-04-04T10:31:42Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
Frontotemporal dementia and Alzheimer's disease are two common forms of dementia and are easily misdiagnosed as each other.
Differentiating between the two dementia types is crucial for determining disease-specific intervention and treatment.
Recent development of Deep-learning-based approaches in the field of medical image computing are delivering some of the best performance for many binary classification tasks.
arXiv Detail & Related papers (2021-09-12T22:40:50Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.