論文の概要: Zero-Shot Machine-Generated Text Detection Using Mixture of Large Language Models
- arxiv url: http://arxiv.org/abs/2409.07615v1
- Date: Wed, 11 Sep 2024 20:55:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:31:44.588753
- Title: Zero-Shot Machine-Generated Text Detection Using Mixture of Large Language Models
- Title(参考訳): 大規模言語モデルの混合を用いたゼロショットマシン生成テキスト検出
- Authors: Matthieu Dubois, François Yvon, Pablo Piantanida,
- Abstract要約: 大規模言語モデル(LLM)は大規模に訓練され、強力なテキスト生成能力を備えている。
それぞれの強みを組み合わせるための理論的な新しいアプローチを提案する。
種々のジェネレータLSMを用いた実験により,検出のロバスト性を効果的に向上することが示唆された。
- 参考スコア(独自算出の注目度): 35.67613230687864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dissemination of Large Language Models (LLMs), trained at scale, and endowed with powerful text-generating abilities has vastly increased the threats posed by generative AI technologies by reducing the cost of producing harmful, toxic, faked or forged content. In response, various proposals have been made to automatically discriminate artificially generated from human-written texts, typically framing the problem as a classification problem. Most approaches evaluate an input document by a well-chosen detector LLM, assuming that low-perplexity scores reliably signal machine-made content. As using one single detector can induce brittleness of performance, we instead consider several and derive a new, theoretically grounded approach to combine their respective strengths. Our experiments, using a variety of generator LLMs, suggest that our method effectively increases the robustness of detection.
- Abstract(参考訳): 大規模で訓練され、強力なテキスト生成能力を備えた大規模言語モデル(LLM)の普及は、有害、有害、偽、偽のコンテンツの生成コストを削減し、生成AI技術によって引き起こされる脅威を大幅に増大させた。
これに対し、人文テキストから人工的に生成されたテキストを自動的に識別する様々な提案がなされており、典型的には、この問題を分類問題とみなす。
殆どのアプローチは、低パープレキシティスコアが確実に機械製コンテンツにシグナルを与えると仮定して、ウェルコセン検出器LDMによる入力文書を評価する。
1つの検出器を使用することで性能の脆さが引き起こされるので、我々は代わりにいくつかのことを考慮し、それぞれの強度を組み合わせるための新しい理論的なアプローチを導出する。
種々のジェネレータLSMを用いた実験により,検出のロバスト性を効果的に向上することが示唆された。
関連論文リスト
- Robust Detection of LLM-Generated Text: A Comparative Analysis [0.276240219662896]
大規模言語モデルは生命の多くの側面に広く統合することができ、その出力は全てのネットワークリソースを迅速に満たすことができる。
生成したテキストの強力な検出器を開発することがますます重要になっている。
この検出器は、これらの技術の潜在的な誤用を防ぎ、ソーシャルメディアなどのエリアを負の効果から保護するために不可欠である。
論文 参考訳(メタデータ) (2024-11-09T18:27:15Z) - DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios [38.952481877244644]
我々は,最新技術(SOTA)検出技術でさえも,このタスクにおいてまだ性能が劣っていることを強調した新しいベンチマークであるTectorRLを提案する。
我々は,現在のSOTA検出器の強度と限界を明らかにした。
DetectRLは、実世界のシナリオにおける検出器の評価に有効なベンチマークになり得ると考えている。
論文 参考訳(メタデータ) (2024-10-31T09:01:25Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination [1.8418334324753884]
本稿では,検出を回避する新しい手法としてバックトランスレーションを紹介する。
本稿では、これらの裏書きされたテキストを組み合わせて、オリジナルのAI生成テキストの操作されたバージョンを生成するモデルを提案する。
我々は,この手法を,オープンソースと3つのプロプライエタリシステムを含む9つのAI検出器上で評価する。
論文 参考訳(メタデータ) (2024-09-22T01:13:22Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
単純だが効果的なブラックボックスゼロショット検出手法を提案する。
人文テキストは典型的には LLM 生成テキストよりも文法上の誤りを多く含んでいる。
提案手法は平均98.7%のAUROCを達成し,パラフレーズや逆行性摂動攻撃に対する強い堅牢性を示した。
論文 参考訳(メタデータ) (2024-05-07T12:57:01Z) - Deciphering Textual Authenticity: A Generalized Strategy through the Lens of Large Language Semantics for Detecting Human vs. Machine-Generated Text [8.290557547578146]
プリトレーニング済みのT5エンコーダとLLM埋め込みサブクラスタリングを組み合わせた,機械生成テキスト検出システムT5LLMCipherを導入する。
提案手法は,機械生成テキストの平均F1スコアが19.6%増加し,非可視ジェネレータやドメインでF1スコアが平均上昇する,最先端の一般化能力を提供する。
論文 参考訳(メタデータ) (2024-01-17T18:45:13Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Large Language Models can be Guided to Evade AI-Generated Text Detection [40.7707919628752]
大規模言語モデル(LLM)は様々なタスクにおいて顕著な性能を示し、一般に広く利用されている。
我々は、これらの検出器の脆弱性を評価するために、外部パラフレーズに頼るのではなく、LSMにプロンプトを付与する。
本研究では,検出器を回避するためのプロンプトを自動構築する,代用型In-Contextサンプル最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:03:25Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
本稿では,強力な大規模言語モデル(LLM)に対するMGT検出のための最初のベンチマークフレームワークを提案する。
一般に単語が多ければ多いほど性能が向上し,ほとんどの検出手法はトレーニングサンプルをはるかに少なくして同様の性能が得られることを示す。
本研究は, テキスト属性タスクにおいて, モデルに基づく検出手法が依然として有効であることを示す。
論文 参考訳(メタデータ) (2023-03-26T21:12:36Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
LLMの規制されていない使用は、盗作、偽ニュースの生成、スパムなど、悪意のある結果をもたらす可能性がある。
最近の研究は、生成されたテキスト出力に存在する特定のモデルシグネチャを使用するか、透かし技術を適用してこの問題に対処しようとしている。
本稿では,これらの検出器は実用シナリオにおいて信頼性が低いことを示す。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。