Leveraging User-Generated Reviews for Recommender Systems with Dynamic Headers
- URL: http://arxiv.org/abs/2409.07627v1
- Date: Wed, 11 Sep 2024 21:18:21 GMT
- Title: Leveraging User-Generated Reviews for Recommender Systems with Dynamic Headers
- Authors: Shanu Vashishtha, Abhay Kumar, Lalitesh Morishetti, Kaushiki Nag, Kannan Achan,
- Abstract summary: E-commerce platforms have a vast catalog of items to cater to their customers' shopping interests.
Many models have been proposed in academic literature to generate and enhance the ranking and recall set of items in these carousels.
This work proposes a novel approach to customize the header generation process of these carousels.
- Score: 5.464901224450247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: E-commerce platforms have a vast catalog of items to cater to their customers' shopping interests. Most of these platforms assist their customers in the shopping process by offering optimized recommendation carousels, designed to help customers quickly locate their desired items. Many models have been proposed in academic literature to generate and enhance the ranking and recall set of items in these carousels. Conventionally, the accompanying carousel title text (header) of these carousels remains static. In most instances, a generic text such as "Items similar to your current viewing" is utilized. Fixed variations such as the inclusion of specific attributes "Other items from a similar seller" or "Items from a similar brand" in addition to "frequently bought together" or "considered together" are observed as well. This work proposes a novel approach to customize the header generation process of these carousels. Our work leverages user-generated reviews that lay focus on specific attributes (aspects) of an item that were favorably perceived by users during their interaction with the given item. We extract these aspects from reviews and train a graph neural network-based model under the framework of a conditional ranking task. We refer to our innovative methodology as Dynamic Text Snippets (DTS) which generates multiple header texts for an anchor item and its recall set. Our approach demonstrates the potential of utilizing user-generated reviews and presents a unique paradigm for exploring increasingly context-aware recommendation systems.
Related papers
- Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Semi-supervised Adversarial Learning for Complementary Item
Recommendation [5.5174379874002435]
In certain online marketplaces, e.g., on online auction sites, constantly new items are added to the catalog.
We propose a novel approach that can leverage both item side-information and labeled complementary item pairs.
Experiments on three e-commerce datasets show that our method is highly effective.
arXiv Detail & Related papers (2023-03-10T09:39:18Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Single-Item Fashion Recommender: Towards Cross-Domain Recommendations [0.0]
This article first suggests a content-based fashion recommender system that uses a parallel neural network to take a single fashion item shop image as input.
Next, the same structure is enhanced to personalize the results based on user preferences.
The last contribution of this paper is a new evaluation metric for recommendation tasks called objective-guided human score.
arXiv Detail & Related papers (2021-11-01T08:15:31Z) - Sequential Modeling with Multiple Attributes for Watchlist
Recommendation in E-Commerce [67.6615871959902]
We study the watchlist functionality in e-commerce and introduce a novel watchlist recommendation task.
Our goal is to prioritize which watchlist items the user should pay attention to next by predicting the next items the user will click.
Our proposed recommendation model, Trans2D, is built on top of the Transformer architecture.
arXiv Detail & Related papers (2021-10-18T10:02:15Z) - A Methodology for the Offline Evaluation of Recommender Systems in a
User Interface with Multiple Carousels [7.8851236034886645]
Video-on-demand and music streaming services provide the user with a page consisting of several recommendation lists.
Finding efficient strategies to select which carousels to display is an active research topic of great industrial interest.
We propose an offline evaluation protocol for a carousel setting in which the recommendation quality of a model is measured by how much it improves upon that of an already available set of carousels.
arXiv Detail & Related papers (2021-05-13T13:14:59Z) - User-Inspired Posterior Network for Recommendation Reason Generation [53.035224183349385]
Recommendation reason generation plays a vital role in attracting customers' attention as well as improving user experience.
We propose a user-inspired multi-source posterior transformer (MSPT), which induces the model reflecting the users' interests.
Experimental results show that our model is superior to traditional generative models.
arXiv Detail & Related papers (2021-02-16T02:08:52Z) - Abstractive Opinion Tagging [65.47649273721679]
In e-commerce, opinion tags refer to a ranked list of tags provided by the e-commerce platform that reflect characteristics of reviews of an item.
Current mechanisms for generating opinion tags rely on either manual or labelling methods, which is time-consuming and ineffective.
We propose an abstractive opinion tagging framework, named AOT-Net, to generate a ranked list of opinion tags given a large number of reviews.
arXiv Detail & Related papers (2021-01-18T05:08:15Z) - Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users [111.28351584726092]
We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
arXiv Detail & Related papers (2020-05-23T08:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.