論文の概要: Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking over Wireless Sensor Networks
- arxiv url: http://arxiv.org/abs/2409.07652v1
- Date: Wed, 11 Sep 2024 22:42:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:11:59.981778
- Title: Gaussian Process Upper Confidence Bounds in Distributed Point Target Tracking over Wireless Sensor Networks
- Title(参考訳): 無線センサネットワーク上での分散点目標追跡におけるガウス過程の上層信頼境界
- Authors: Xingchi Liu, Lyudmila Mihaylova, Jemin George, Tien Pham,
- Abstract要約: 本稿では,点目標追跡のための分散ガウス過程(DGP)アプローチを提案し,状態推定値の上限値(UCB)を導出する。
The novel hybrid Bayesian filtering method is proposed to improve the DGP approach by adopted a Poisson measurement chance model。
数値計算により,提案手法の追跡精度とロバスト性を示す。
- 参考スコア(独自算出の注目度): 8.837529873076235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification plays a key role in the development of autonomous systems, decision-making, and tracking over wireless sensor networks (WSNs). However, there is a need of providing uncertainty confidence bounds, especially for distributed machine learning-based tracking, dealing with different volumes of data collected by sensors. This paper aims to fill in this gap and proposes a distributed Gaussian process (DGP) approach for point target tracking and derives upper confidence bounds (UCBs) of the state estimates. A unique contribution of this paper includes the derived theoretical guarantees on the proposed approach and its maximum accuracy for tracking with and without clutter measurements. Particularly, the developed approaches with uncertainty bounds are generic and can provide trustworthy solutions with an increased level of reliability. A novel hybrid Bayesian filtering method is proposed to enhance the DGP approach by adopting a Poisson measurement likelihood model. The proposed approaches are validated over a WSN case study, where sensors have limited sensing ranges. Numerical results demonstrate the tracking accuracy and robustness of the proposed approaches. The derived UCBs constitute a tool for trustworthiness evaluation of DGP approaches. The simulation results reveal that the proposed UCBs successfully encompass the true target states with 88% and 42% higher probability in X and Y coordinates, respectively, when compared to the confidence interval-based method.
- Abstract(参考訳): 不確実性定量化は、自律システムの開発、意思決定、無線センサネットワーク(WSN)の追跡において重要な役割を果たしている。
しかし、特に分散機械学習ベースのトラッキングにおいて、センサが収集したさまざまな量のデータを扱う、確実な信頼性境界を提供する必要がある。
本稿では、このギャップを埋めることを目的として、点目標追跡のための分散ガウス過程(DGP)アプローチを提案し、状態推定の上限値(UCB)を導出する。
本論文の独特な貢献は,提案手法の導出した理論的保証と,粗い測定を伴わずに追跡するための最大精度を含む。
特に、不確実性境界を持つ先進的なアプローチは汎用的であり、信頼性を高めた信頼性の高いソリューションを提供することができる。
The novel hybrid Bayesian filtering method is proposed to improve the DGP approach by adopted a Poisson measurement chance model。
提案手法は,センサの検知範囲が限られているWSNケーススタディで検証された。
数値計算により,提案手法の追跡精度とロバスト性を示す。
得られたUPBはDGPアプローチの信頼性評価ツールを構成する。
シミュレーションの結果,提案したUCBは,信頼区間法と比較して,X座標とY座標の確率が88%,Y座標の確率が42%高い真の目標状態を含むことがわかった。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - UPNet: Uncertainty-based Picking Deep Learning Network for Robust First Break Picking [6.380128763476294]
第一破砕(FB)ピッキングは地下速度モデルの決定において重要な側面である。
この処理を高速化するために、ディープニューラルネットワーク(DNN)が提案されている。
本稿では、FB選択タスクに不確実性定量化を導入し、UPNetと呼ばれる新しい不確実性に基づくディープラーニングネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T08:13:09Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Localization Uncertainty-Based Attention for Object Detection [8.154943252001848]
ガウスモデルを用いて, 4方向位置決めの不確かさを予測できる, より効率的な不確実性認識型高密度検出器 (UADET) を提案する。
MS COCOベンチマークを用いた実験によると、UADETはベースラインFCOSを一貫して上回り、最高のモデルであるResNext-64x4d-101-DCNは、COCOテストデーブで48.3%の単一スケールAPを得る。
論文 参考訳(メタデータ) (2021-08-25T04:32:39Z) - Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
Detectors [8.029049649310213]
本稿では,新しい勾配に基づく不確実性指標を導入し,異なる物体検出アーキテクチャについて検討する。
実験では、真の肯定的/偽の正の判別と、結合上の交叉の予測において顕著な改善が示された。
また,モンテカルロのドロップアウト不確実性指標に対する改善や,さまざまな不確実性指標のソースを集約することで,さらなる大幅な向上が期待できる。
論文 参考訳(メタデータ) (2021-07-09T16:04:11Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
ドメインシフトの下で校正された不確実性を学習するためのフレームワークを提案する。
特に、密度比推定は、ターゲット(テスト)サンプルの近さをソース(トレーニング)分布に反映する。
提案手法は下流タスクに有利な校正不確実性を生成する。
論文 参考訳(メタデータ) (2020-10-08T02:10:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。