STAND: Data-Efficient and Self-Aware Precondition Induction for Interactive Task Learning
- URL: http://arxiv.org/abs/2409.07653v1
- Date: Wed, 11 Sep 2024 22:49:38 GMT
- Title: STAND: Data-Efficient and Self-Aware Precondition Induction for Interactive Task Learning
- Authors: Daniel Weitekamp, Kenneth Koedinger,
- Abstract summary: STAND is a data-efficient and computationally efficient machine learning approach.
It produces better classification accuracy than popular approaches like XGBoost.
It produces a measure called instance certainty that can predict increases in holdout set performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: STAND is a data-efficient and computationally efficient machine learning approach that produces better classification accuracy than popular approaches like XGBoost on small-data tabular classification problems like learning rule preconditions from interactive training. STAND accounts for a complete set of good candidate generalizations instead of selecting a single generalization by breaking ties randomly. STAND can use any greedy concept construction strategy, like decision tree learning or sequential covering, and build a structure that approximates a version space over disjunctive normal logical statements. Unlike candidate elimination approaches to version-space learning, STAND does not suffer from issues of version-space collapse from noisy data nor is it restricted to learning strictly conjunctive concepts. More importantly, STAND can produce a measure called instance certainty that can predict increases in holdout set performance and has high utility as an active-learning heuristic. Instance certainty enables STAND to be self-aware of its own learning: it knows when it learns and what example will help it learn the most. We illustrate that instance certainty has desirable properties that can help users select next training problems, and estimate when training is complete in applications where users interactively teach an AI a complex program.
Related papers
- Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Learning to Learn in Interactive Constraint Acquisition [7.741303298648302]
In Constraint Acquisition (CA), the goal is to assist the user by automatically learning the model.
In (inter)active CA, this is done by interactively posting queries to the user.
We propose to use probabilistic classification models to guide interactive CA to generate more promising queries.
arXiv Detail & Related papers (2023-12-17T19:12:33Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
Large language models can be inconsistent when it comes to completing user specified tasks.
We propose a novel RL method, that combines both the flexible utility framework of RL with the ability of supervised learning.
In addition to empirically validating ILQL, we present a detailed empirical analysis situations where offline RL can be useful in natural language generation settings.
arXiv Detail & Related papers (2022-06-05T18:38:42Z) - Efficient Learning of Interpretable Classification Rules [34.27987659227838]
This paper contributes an interpretable learning framework IMLI, that is based on maximum satisfiability (MaxSAT) for classification rules expressible in proposition logic.
In our experiments, IMLI achieves the best balance among prediction accuracy, interpretability, and scalability.
arXiv Detail & Related papers (2022-05-14T00:36:38Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Predicting What You Already Know Helps: Provable Self-Supervised
Learning [60.27658820909876]
Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data.
We show a mechanism exploiting the statistical connections between certain em reconstruction-based pretext tasks that guarantee to learn a good representation.
We prove the linear layer yields small approximation error even for complex ground truth function class.
arXiv Detail & Related papers (2020-08-03T17:56:13Z) - MC-BERT: Efficient Language Pre-Training via a Meta Controller [96.68140474547602]
Large-scale pre-training is computationally expensive.
ELECTRA, an early attempt to accelerate pre-training, trains a discriminative model that predicts whether each input token was replaced by a generator.
We propose a novel meta-learning framework, MC-BERT, to achieve better efficiency and effectiveness.
arXiv Detail & Related papers (2020-06-10T09:22:19Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z) - An Advance on Variable Elimination with Applications to Tensor-Based
Computation [11.358487655918676]
We present new results on the classical algorithm of variable elimination, which underlies many algorithms including for probabilistic inference.
The results relate to exploiting functional dependencies, allowing one to perform inference and learning efficiently on models that have very large treewidth.
arXiv Detail & Related papers (2020-02-21T14:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.