論文の概要: Attack End-to-End Autonomous Driving through Module-Wise Noise
- arxiv url: http://arxiv.org/abs/2409.07706v1
- Date: Thu, 12 Sep 2024 02:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:02:00.548537
- Title: Attack End-to-End Autonomous Driving through Module-Wise Noise
- Title(参考訳): モジュールワイズノイズによるエンド・ツー・エンド自動運転の攻撃
- Authors: Lu Wang, Tianyuan Zhang, Yikai Han, Muyang Fang, Ting Jin, Jiaqi Kang,
- Abstract要約: 本稿では,モジュラー・エンド・エンド・エンド・エンドの自律運転モデルに関する総合的対角セキュリティ研究を行う。
モデル推論プロセスにおける潜在的な脆弱性を徹底的に検討し、モジュールワイドノイズ注入によるユニバーサルアタックスキームを設計する。
本研究では,フルスタック自動運転モデルを用いた大規模実験を行い,攻撃手法が従来の攻撃方法より優れていることを示す。
- 参考スコア(独自算出の注目度): 4.281151553151594
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With recent breakthroughs in deep neural networks, numerous tasks within autonomous driving have exhibited remarkable performance. However, deep learning models are susceptible to adversarial attacks, presenting significant security risks to autonomous driving systems. Presently, end-to-end architectures have emerged as the predominant solution for autonomous driving, owing to their collaborative nature across different tasks. Yet, the implications of adversarial attacks on such models remain relatively unexplored. In this paper, we conduct comprehensive adversarial security research on the modular end-to-end autonomous driving model for the first time. We thoroughly consider the potential vulnerabilities in the model inference process and design a universal attack scheme through module-wise noise injection. We conduct large-scale experiments on the full-stack autonomous driving model and demonstrate that our attack method outperforms previous attack methods. We trust that our research will offer fresh insights into ensuring the safety and reliability of autonomous driving systems.
- Abstract(参考訳): 近年のディープニューラルネットワークのブレークスルーにより、自律運転における多くのタスクが目覚ましいパフォーマンスを示した。
しかし、ディープラーニングモデルは敵の攻撃を受けやすいため、自律運転システムに重大なセキュリティリスクが生じる。
現在、エンド・ツー・エンドのアーキテクチャは、さまざまなタスクにまたがるコラボレーティブな性質のため、自動運転の主要なソリューションとして現れています。
しかし、そのようなモデルに対する敵対的攻撃の影響は、いまだに解明されていない。
本稿では,モジュール化されたエンドツーエンド自動運転モデルに対する総合的対角セキュリティ研究を行う。
モデル推論プロセスにおける潜在的な脆弱性を徹底的に検討し、モジュールワイドノイズ注入によるユニバーサルアタックスキームを設計する。
本研究では,フルスタック自動運転モデルを用いた大規模実験を行い,攻撃手法が従来の攻撃方法より優れていることを示す。
我々は、自動運転車の安全性と信頼性の確保について、我々の研究が新たな洞察を提供すると信じている。
関連論文リスト
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Dynamic Adversarial Attacks on Autonomous Driving Systems [16.657485186920102]
本稿では,自律走行システムのレジリエンスに挑戦する攻撃機構を提案する。
我々は、他の移動車に搭載された画面に対向パッチを動的に表示することにより、自動運転車の意思決定プロセスを操作する。
我々の実験は、現実の自律走行シナリオにおけるこのような動的敵攻撃の実装が最初に成功したことを実証している。
論文 参考訳(メタデータ) (2023-12-10T04:14:56Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
Iso-DreamはDream-to-Controlフレームワークを2つの側面で改善する。
まず、逆動力学を最適化することにより、世界モデルに制御可能で制御不能な情報源を学習させることを奨励する。
第2に、エージェントの挙動を世界モデルの切り離された潜在的想像力に最適化する。
論文 参考訳(メタデータ) (2022-05-27T08:07:39Z) - Evaluating Adversarial Attacks on Driving Safety in Vision-Based
Autonomous Vehicles [21.894836150974093]
近年、多くのディープラーニングモデルが自動運転に採用されている。
近年の研究では、敵対的攻撃がディープラーニングに基づく3次元物体検出モデルの検出精度を著しく低下させることが示されている。
論文 参考訳(メタデータ) (2021-08-06T04:52:09Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
この調査は、自動運転システムを危うくする可能性のあるさまざまな攻撃の詳細な分析を提供する。
さまざまなディープラーニングモデルに対する敵意攻撃と、物理的およびサイバー的コンテキストにおける攻撃をカバーする。
深層学習に基づく自動運転の安全性を向上させるために、いくつかの有望な研究方向が提案されている。
論文 参考訳(メタデータ) (2021-04-05T06:31:47Z) - End-to-end Uncertainty-based Mitigation of Adversarial Attacks to
Automated Lane Centering [12.11406399284803]
我々は,認識,計画,制御モジュール全体にわたる敵の攻撃の影響に対処するエンドツーエンドアプローチを提案する。
われわれのアプローチは、敵攻撃の影響を効果的に軽減し、元のOpenPilotよりも55%から90%改善できる。
論文 参考訳(メタデータ) (2021-02-27T22:36:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。