Low-overhead magic state distillation with color codes
- URL: http://arxiv.org/abs/2409.07707v2
- Date: Sat, 28 Sep 2024 08:17:26 GMT
- Title: Low-overhead magic state distillation with color codes
- Authors: Seok-Hyung Lee, Felix Thomsen, Nicholas Fazio, Benjamin J. Brown, Stephen D. Bartlett,
- Abstract summary: Fault-tolerant implementation of non-Clifford gates is a major challenge for achieving universal fault-tolerant quantum computing.
We propose two distillation schemes based on the 15-to-1 distillation circuit and lattice surgery, which differ in their methods for handling faulty rotations.
- Score: 1.3980986259786223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant implementation of non-Clifford gates is a major challenge for achieving universal fault-tolerant quantum computing with quantum error-correcting codes. Magic state distillation is the most well-studied method for this but requires significant resources. Hence, it is crucial to tailor and optimize magic state distillation for specific codes from both logical- and physical-level perspectives. In this work, we perform such optimization for two-dimensional color codes, which are promising due to their higher encoding rates compared to surface codes, transversal implementation of Clifford gates, and efficient lattice surgery. We propose two distillation schemes based on the 15-to-1 distillation circuit and lattice surgery, which differ in their methods for handling faulty rotations. Our first scheme uses faulty T-measurement, offering resource efficiency when the target infidelity is above a certain threshold ($\sim 35p^3$ for physical error rate $p$). To achieve lower infidelities while maintaining resource efficiency, our second scheme exploits a distillation-free fault-tolerant magic state preparation protocol, achieving significantly lower infidelities (e.g., $\sim 10^{-19}$ for $p = 10^{-4}$) than the first scheme. Notably, our schemes outperform the best existing magic state distillation methods for color codes by up to about two orders of magnitude in resource costs for a given achievable target infidelity.
Related papers
- Constant-Overhead Magic State Distillation [10.97201040724828]
Magic state distillation is a crucial yet resource-intensive process in fault-tolerant quantum computation.
Existing protocols require polylogarithmically growing overheads with some $gamma > 0$.
We develop protocols that achieve an $mathcalO(1)$ overhead, meaning the optimal $gamma = 0$.
arXiv Detail & Related papers (2024-08-14T18:31:22Z) - Even more efficient magic state distillation by zero-level distillation [0.8009842832476994]
We propose zero-level distillation, which prepares a high fidelity logical magic state using physical qubits on a square lattice.
The key idea behind is using the Steane code to distill a logical magic state by using noisy Clifford gates with error detection.
arXiv Detail & Related papers (2024-03-06T19:01:28Z) - Bit-flipping Decoder Failure Rate Estimation for (v,w)-regular Codes [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.
We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial
Purification [63.65630243675792]
Diffusion-based purification defenses leverage diffusion models to remove crafted perturbations of adversarial examples.
Recent studies show that even advanced attacks cannot break such defenses effectively.
We propose a unified framework DiffAttack to perform effective and efficient attacks against diffusion-based purification defenses.
arXiv Detail & Related papers (2023-10-27T15:17:50Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Logical Magic State Preparation with Fidelity Beyond the Distillation
Threshold on a Superconducting Quantum Processor [20.66929930736679]
Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers.
We present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code.
We further experimentally implement it on the textitZuchongzhi 2.1 superconducting quantum processor.
arXiv Detail & Related papers (2023-05-25T12:10:59Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
We present an approach that avoids the use of a dual-encoder for retrieval, relying solely on the cross-encoder.
Our approach provides test-time recall-vs-computational cost trade-offs superior to the current widely-used methods.
arXiv Detail & Related papers (2022-10-23T00:32:04Z) - High-Fidelity Magic-State Preparation with a Biased-Noise Architecture [2.624902795082451]
Magic state distillation is a resource intensive subroutine that consumes noisy input states to produce high-fidelity resource states.
We propose an error-detecting code which detects the dominant errors that occur during state preparation.
Our approach promises considerable savings in overheads with near-term technology.
arXiv Detail & Related papers (2021-09-06T18:02:01Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - Very low overhead fault-tolerant magic state preparation using redundant
ancilla encoding and flag qubits [1.2891210250935146]
We introduce a new concept which we call redundant ancilla encoding.
We show that our scheme can produce magic states using an order of magnitude fewer qubits and space-time overhead.
arXiv Detail & Related papers (2020-03-06T06:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.