Magic State Injection on IBM Quantum Processors Above the Distillation Threshold
- URL: http://arxiv.org/abs/2412.01446v3
- Date: Wed, 18 Dec 2024 00:27:54 GMT
- Title: Magic State Injection on IBM Quantum Processors Above the Distillation Threshold
- Authors: Younghun Kim, Martin Sevior, Muhammad Usman,
- Abstract summary: This work employs a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors.
We report error thresholds for both logical bit- and phase-flip errors, of $approx0.37%$ and $approx0.31%$, respectively.
Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
- Score: 1.7359033750147501
- License:
- Abstract: The surface code family is a promising approach to implementing fault-tolerant quantum computations. Universal fault-tolerance requires error-corrected non-Clifford operations, in addition to Clifford gates, and for the former, it is imperative to experimentally demonstrate additional resources known as magic states. Another challenge is to efficiently embed surface codes into quantum hardware with connectivity constraints. This work simultaneously addresses both challenges by employing a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors (\texttt{ibm\_fez}) and implementing the magic state injection protocol. Our work reports error thresholds for both logical bit- and phase-flip errors, of $\approx0.37\%$ and $\approx0.31\%$, respectively, which are higher than the threshold values previously reported with traditional embedding. The post-selection-based preparation of logical magic states $|H_L\rangle$ and $|T_L\rangle$ achieve fidelities of $0.8806\pm0.0002$ and $0.8665\pm0.0003$, respectively, which are both above the magic state distillation threshold. Additionally, we report the minimum fidelity among injected arbitrary single logical qubit states as $0.8356\pm0.0003$. Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
Related papers
- Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Scaling and logic in the color code on a superconducting quantum processor [109.61104855764401]
We present a demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations.
We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection.
This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors.
arXiv Detail & Related papers (2024-12-18T19:00:05Z) - Optimizing Multi-level Magic State Factories for Fault-Tolerant Quantum Architectures [0.8642846017977626]
We consider a concept architecture comprising a dedicated zone as a multi-level magic state factory and a core processor for efficient logical operations.
We show that, in the proposed architecture, $105$--$108$ physical qubits are required for quantum algorithms with $T$--$1015$ and logical qubit counts in the range $102$--$104$, when run on quantum computers with quantum memory.
arXiv Detail & Related papers (2024-11-06T21:25:34Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Constant-Overhead Magic State Distillation [10.97201040724828]
Magic state distillation is a crucial yet resource-intensive process in fault-tolerant quantum computation.
Existing protocols require polylogarithmically growing overheads with some $gamma > 0$.
We develop protocols that achieve an $mathcalO(1)$ overhead, meaning the optimal $gamma = 0$.
arXiv Detail & Related papers (2024-08-14T18:31:22Z) - Even more efficient magic state distillation by zero-level distillation [0.8009842832476994]
We propose zero-level distillation, which prepares a high fidelity logical magic state using physical qubits on a square lattice.
The key idea behind is using the Steane code to distill a logical magic state by using noisy Clifford gates with error detection.
arXiv Detail & Related papers (2024-03-06T19:01:28Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Logical Magic State Preparation with Fidelity Beyond the Distillation
Threshold on a Superconducting Quantum Processor [20.66929930736679]
Fault-tolerant quantum computing based on surface code has emerged as an attractive candidate for practical large-scale quantum computers.
We present a hardware-efficient and scalable protocol for arbitrary logical state preparation for the rotated surface code.
We further experimentally implement it on the textitZuchongzhi 2.1 superconducting quantum processor.
arXiv Detail & Related papers (2023-05-25T12:10:59Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Very low overhead fault-tolerant magic state preparation using redundant
ancilla encoding and flag qubits [1.2891210250935146]
We introduce a new concept which we call redundant ancilla encoding.
We show that our scheme can produce magic states using an order of magnitude fewer qubits and space-time overhead.
arXiv Detail & Related papers (2020-03-06T06:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.