Unfolded distillation: very low-cost magic state preparation for biased-noise qubits
- URL: http://arxiv.org/abs/2507.12511v1
- Date: Wed, 16 Jul 2025 18:00:00 GMT
- Title: Unfolded distillation: very low-cost magic state preparation for biased-noise qubits
- Authors: Diego Ruiz, Jérémie Guillaud, Christophe Vuillot, Mazyar Mirrahimi,
- Abstract summary: We propose a low-cost magic state distillation scheme for biased-noise qubits.<n>The logical fidelity remains nearly identical even at a more modest noise bias of $eta gtrsim 80$.<n>Our construction is based on unfolding the $X$ stabilizer group of the Hadamard 3D quantum Reed-Muller code in 2D.
- Score: 1.8749305679160366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magic state distillation enables universal fault-tolerant quantum computation by implementing non-Clifford gates via the preparation of high-fidelity magic states. However, it comes at the cost of substantial logical-level overhead in both space and time. In this work, we propose a very low-cost magic state distillation scheme for biased-noise qubits. By leveraging the noise bias, our scheme enables the preparation of a magic state with a logical error rate of $3 \times 10^{-7}$, using only 53 qubits and 5.5 error correction rounds, under a noise bias of $\eta \gtrsim 5 \times 10^6$ and a phase-flip noise rate of $0.1\%$. This reduces the circuit volume by more than one order of magnitude relative to magic state cultivation for unbiased-noise qubits and by more than two orders of magnitude relative to standard magic state distillation. Moreover, our scheme provides three key advantages over previous proposals for biased-noise qubits. First, it only requires nearest-neighbor two-qubit gates on a 2D lattice. Second, the logical fidelity remains nearly identical even at a more modest noise bias of $\eta \gtrsim 80$, at the cost of a slightly increased circuit volume. Third, the scheme remains effective even at high physical phase-flip rates, in contrast to previously proposed approaches whose circuit volume grows exponentially with the error rate. Our construction is based on unfolding the $X$ stabilizer group of the Hadamard 3D quantum Reed-Muller code in 2D, enabling distillation at the physical level rather than the logical level, and is therefore referred to as $\textit{unfolded}$ distillation.
Related papers
- In-situ mid-circuit qubit measurement and reset in a single-species trapped-ion quantum computing system [34.82692226532414]
We implement in-situ mid-circuit measurement and reset (MCMR) operations on a trapped-ion quantum computing system.<n>We introduce and compare two methods for isolating data qubits from measured qubits.<n>We experimentally demonstrate both methods on a crystal of two $171textrmYb+$ ions.
arXiv Detail & Related papers (2025-04-17T00:10:35Z) - High-fidelity gates in a transmon using bath engineering for passive leakage reset [65.46249968484794]
Leakage, the occupation of any state not used in the computation, is one of the most devastating errors in quantum error correction.
We demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three orders of magnitude.
arXiv Detail & Related papers (2024-11-06T18:28:49Z) - Low-overhead magic state distillation with color codes [1.3980986259786223]
Fault-tolerant implementation of non-Clifford gates is a major challenge for achieving universal fault-tolerant quantum computing.<n>We propose two distillation schemes based on the 15-to-1 distillation circuit and lattice surgery, differing in their methods for handling faulty rotations.<n>To reach a given target infidelity, our schemes require approximately two orders of magnitude fewer resources than the previous best magic state distillation schemes for color codes.
arXiv Detail & Related papers (2024-09-12T02:20:17Z) - Constant-Overhead Magic State Distillation [10.97201040724828]
Magic state distillation is a crucial yet resource-intensive process in fault-tolerant quantum computation.
Existing protocols require polylogarithmically growing overheads with some $gamma > 0$.
We develop protocols that achieve an $mathcalO(1)$ overhead, meaning the optimal $gamma = 0$.
arXiv Detail & Related papers (2024-08-14T18:31:22Z) - Efficient Magic State Distillation by Zero-Level Distillation [0.7332146059733189]
We propose zero-level distillation, which prepares a high-fidelity logical magic state at the physical level.<n>We show that distillation can be made even more efficient than the conventional sophisticated approaches with logical level distillations.<n>We find that the error rate of the logical magic state scales as approximately $100 times p2$ in terms of the physical error rate $p$.
arXiv Detail & Related papers (2024-03-06T19:01:28Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - High-Fidelity Magic-State Preparation with a Biased-Noise Architecture [2.624902795082451]
Magic state distillation is a resource intensive subroutine that consumes noisy input states to produce high-fidelity resource states.
We propose an error-detecting code which detects the dominant errors that occur during state preparation.
Our approach promises considerable savings in overheads with near-term technology.
arXiv Detail & Related papers (2021-09-06T18:02:01Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - Very low overhead fault-tolerant magic state preparation using redundant
ancilla encoding and flag qubits [1.2891210250935146]
We introduce a new concept which we call redundant ancilla encoding.
We show that our scheme can produce magic states using an order of magnitude fewer qubits and space-time overhead.
arXiv Detail & Related papers (2020-03-06T06:24:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.