論文の概要: Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy
- arxiv url: http://arxiv.org/abs/2409.07723v1
- Date: Thu, 12 Sep 2024 03:04:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:51:48.993528
- Title: Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy
- Title(参考訳): 内視鏡における教師なし単眼深度推定のための奥行きモデル
- Authors: Bojian Li, Bo Liu, Jinghua Yue, Fugen Zhou,
- Abstract要約: 本稿では,Depth Anything Modelのための新しい微調整戦略を提案する。
本手法は本態性に基づく教師なし単眼深度推定フレームワークと統合する。
SCAREDデータセットで得られた結果は,本手法が最先端の性能を実現することを示す。
- 参考スコア(独自算出の注目度): 3.1186464715409983
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Depth estimation is a cornerstone of 3D reconstruction and plays a vital role in minimally invasive endoscopic surgeries. However, most current depth estimation networks rely on traditional convolutional neural networks, which are limited in their ability to capture global information. Foundation models offer a promising avenue for enhancing depth estimation, but those currently available are primarily trained on natural images, leading to suboptimal performance when applied to endoscopic images. In this work, we introduce a novel fine-tuning strategy for the Depth Anything Model and integrate it with an intrinsic-based unsupervised monocular depth estimation framework. Our approach includes a low-rank adaptation technique based on random vectors, which improves the model's adaptability to different scales. Additionally, we propose a residual block built on depthwise separable convolution to compensate for the transformer's limited ability to capture high-frequency details, such as edges and textures. Our experimental results on the SCARED dataset show that our method achieves state-of-the-art performance while minimizing the number of trainable parameters. Applying this method in minimally invasive endoscopic surgery could significantly enhance both the precision and safety of these procedures.
- Abstract(参考訳): 深さ推定は3次元再建の基盤であり,低侵襲内視鏡手術において重要な役割を担っている。
しかし、現在の深度推定ネットワークのほとんどは、グローバル情報をキャプチャする能力に制限がある従来の畳み込みニューラルネットワークに依存している。
ファンデーションモデルは、深度推定を強化するための有望な道を提供するが、現在利用可能なものは、主に自然画像に基づいて訓練されており、内視鏡画像に適用した場合、最適以下のパフォーマンスをもたらす。
本研究では,Depth Anything Modelのための新しい微調整戦略を導入し,本質的な非教師なし単分子深度推定フレームワークと統合する。
提案手法にはランダムベクトルに基づく低ランク適応手法が含まれており,モデルの異なるスケールへの適応性を向上させる。
さらに, エッジやテクスチャなどの高頻度の詳細を捕捉するトランスの限られた性能を補うために, 奥行き分離可能な畳み込みを基盤とした残差ブロックを提案する。
SCAREDデータセットによる実験結果から,本手法はトレーニング可能なパラメータの数を最小化しつつ,最先端の性能を実現する。
低侵襲内視鏡手術にこの方法を適用することで,これらの手術の精度と安全性を大きく向上させることができる。
関連論文リスト
- Surgical Depth Anything: Depth Estimation for Surgical Scenes using Foundation Models [4.740415113160021]
深度推定の最先端基盤モデルであるDepth Anythingは、ぼやけ、出血、反射といった問題に苦慮している。
本稿では,より正確な深度マップの提供を目的として,外科領域に特化してDepth Anythingモデルを微調整する。
論文 参考訳(メタデータ) (2024-10-09T21:06:14Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - DARES: Depth Anything in Robotic Endoscopic Surgery with Self-supervised Vector-LoRA of the Foundation Model [17.41557655783514]
ロボット内視鏡手術(DARES)におけるDepth Anythingの導入
DAM V2における新しい適応手法であるローランド適応(LoRA)は、自己教師付き単眼深度推定を行う。
近年の最先端の自己監督型単分子深度推定法よりも, 新たな手法が優れていることが検証された。
論文 参考訳(メタデータ) (2024-08-30T17:35:06Z) - ToDER: Towards Colonoscopy Depth Estimation and Reconstruction with Geometry Constraint Adaptation [67.22294293695255]
そこで本稿では,ToDERという双方向適応アーキテクチャを用いて,高精度な深度推定を行う新しいパイプラインを提案する。
以上の結果から,本手法は実写および合成大腸内視鏡ビデオの深度マップを精度良く予測できることが示唆された。
論文 参考訳(メタデータ) (2024-07-23T14:24:26Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3次元ガウシアンスプラッティングは、リアルタイムな新規ビュー合成において顕著な性能を示した。
これまでのアプローチでは、3Dガウスの訓練に奥行き監視を取り入れ、オーバーフィッティングを軽減してきた。
本研究では,3次元ガウスの深度分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:18:30Z) - EndoDAC: Efficient Adapting Foundation Model for Self-Supervised Depth Estimation from Any Endoscopic Camera [12.152362025172915]
内視鏡的深度カメラ (EndoDAC) を用いて, 基礎モデルを内視鏡的シーンに適応させる手法を提案する。
具体的には、DV-LoRA(Dynamic Vector-Based Low-Rank Adaptation)を開発し、畳み込みネックブロックを用いる。
当社のフレームワークは,任意のカメラからの単眼手術ビデオのみをトレーニングし,最小限のトレーニングコストを確保できる。
論文 参考訳(メタデータ) (2024-05-14T14:55:15Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
本研究では,教師なし深度計算と推定のために,従来不可能であった幾何拡張の幅広い範囲をアンロックする手法を提案する。
これは、出力深さの座標への幾何変換を反転、あるいはアンドウイング(undo''-ing)し、深度マップを元の参照フレームに戻すことで達成される。
論文 参考訳(メタデータ) (2023-10-15T05:15:45Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
本稿では,従来のSfM再構成と学習に基づく先行手法を併用した多視点深度推定手法を提案する。
提案手法は室内シーンにおける最先端手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2021-09-02T17:54:31Z) - Self-Supervised Generative Adversarial Network for Depth Estimation in
Laparoscopic Images [13.996932179049978]
本稿では,ジェネレーティブ・ディバイサル・ネットワークに基づく自己教師型深度推定手法であるSADepthを提案する。
エンコーダデコーダジェネレータと、トレーニング中に幾何学的制約を組み込む識別器で構成される。
2つの公開データセットの実験により、SADepthは最新の最先端の教師なし手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2021-07-09T19:40:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。