GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning
- URL: http://arxiv.org/abs/2409.07725v1
- Date: Thu, 12 Sep 2024 03:09:05 GMT
- Title: GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning
- Authors: Kaizhe Fan, Quanjun Li,
- Abstract summary: Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations.
Current graph neural network models face the challenge of requiring extensive labeled data.
We propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations, enabling various downstream tasks such as node classification and community detection. However, most current graph neural network models face the challenge of requiring extensive labeled data, which limits their practical applicability in real-world scenarios where labeled data is scarce. To address this challenge, researchers have explored Graph Contrastive Learning (GCL), which leverages enhanced graph data and contrastive learning techniques. While promising, existing GCL methods often struggle with effectively capturing both local and global graph structures, and balancing the trade-off between nodelevel and graph-level representations. In this work, we propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning (GRE2-MDCL). Our model introduces a novel triple network architecture with a multi-head attention GNN as the core. GRE2-MDCL first globally and locally augments the input graph using SVD and LAGNN techniques. It then constructs a multidimensional contrastive loss, incorporating cross-network, cross-view, and neighbor contrast, to optimize the model. Extensive experiments on benchmark datasets Cora, Citeseer, and PubMed demonstrate that GRE2-MDCL achieves state-of-the-art performance, with average accuracies of 82.5%, 72.5%, and 81.6% respectively. Visualizations further show tighter intra-cluster aggregation and clearer inter-cluster boundaries, highlighting the effectiveness of our framework in improving upon baseline GCL models.
Related papers
- Subgraph Networks Based Contrastive Learning [5.736011243152416]
Graph contrastive learning (GCL) can solve the problem of annotated data scarcity.
Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations.
We propose a novel framework called subgraph network-based contrastive learning (SGNCL)
arXiv Detail & Related papers (2023-06-06T08:52:44Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Adversarial Graph Augmentation to Improve Graph Contrastive Learning [21.54343383921459]
We propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training.
We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings.
arXiv Detail & Related papers (2021-06-10T15:34:26Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.