Large Language Models are Pattern Matchers: Editing Semi-Structured and Structured Documents with ChatGPT
- URL: http://arxiv.org/abs/2409.07732v1
- Date: Thu, 12 Sep 2024 03:41:39 GMT
- Title: Large Language Models are Pattern Matchers: Editing Semi-Structured and Structured Documents with ChatGPT
- Authors: Irene Weber,
- Abstract summary: This paper investigates if Large Language Models (LLMs) can be applied for editing structured and semi-structured documents with minimal effort.
ChatGPT demonstrates a strong ability to recognize and process the structure of annotated documents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) offer numerous applications, the full extent of which is not yet understood. This paper investigates if LLMs can be applied for editing structured and semi-structured documents with minimal effort. Using a qualitative research approach, we conduct two case studies with ChatGPT and thoroughly analyze the results. Our experiments indicate that LLMs can effectively edit structured and semi-structured documents when provided with basic, straightforward prompts. ChatGPT demonstrates a strong ability to recognize and process the structure of annotated documents. This suggests that explicitly structuring tasks and data in prompts might enhance an LLM's ability to understand and solve tasks. Furthermore, the experiments also reveal impressive pattern matching skills in ChatGPT. This observation deserves further investigation, as it may contribute to understanding the processes leading to hallucinations in LLMs.
Related papers
- Large Language Models Might Not Care What You Are Saying: Prompt Format Beats Descriptions [13.87098305304058]
We propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples.
Preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL perfromance.
arXiv Detail & Related papers (2024-08-16T14:49:04Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
Struct-X operates through five key phases: read-model-fill-reflect-reason''
It encodes structured data into a topological space using graph embeddings.
It fills in missing entity information with knowledge retrieval modules.
The final phase involves constructing a topological network with selected tokens.
arXiv Detail & Related papers (2024-07-17T13:06:25Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - kNN-ICL: Compositional Task-Oriented Parsing Generalization with Nearest
Neighbor In-Context Learning [50.40636157214161]
Task-Oriented Parsing (TOP) enables conversational assistants to interpret user commands expressed in natural language.
LLMs have achieved impressive performance in computer programs based on a natural language prompt.
This paper focuses on harnessing the capabilities of LLMs for semantic parsing tasks.
arXiv Detail & Related papers (2023-12-17T17:26:50Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Bench is a comprehensive benchmark featuring prominent Large Language Models (LLMs)
We propose two innovative metrics, P-Score (Prompting Score) and H-Score (Heuristical Score)
Our experiments show that applying our structure-aware fine-tuning to LLaMA-7B leads to substantial performance gains.
arXiv Detail & Related papers (2023-09-16T11:31:58Z) - Frugal Prompting for Dialog Models [17.048111072193933]
This study examines different approaches for building dialog systems using large language models (LLMs)
As part of prompt tuning, we experiment with various ways of providing instructions, exemplars, current query and additional context.
The research also analyzes the representations of dialog history that have the optimal usable-information density.
arXiv Detail & Related papers (2023-05-24T09:06:49Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
We develop an emphIterative Reading-then-Reasoning(IRR) approach for solving question answering tasks based on structured data.
Our approach can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines.
arXiv Detail & Related papers (2023-05-16T17:45:23Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
We present a structured prompting approach for linguistic structured prediction tasks.
We evaluate this approach on part-of-speech tagging, named entity recognition, and sentence chunking.
We find that while PLMs contain significant prior knowledge of task labels due to task leakage into the pretraining corpus, structured prompting can also retrieve linguistic structure with arbitrary labels.
arXiv Detail & Related papers (2022-11-15T01:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.