論文の概要: Efficient Privacy-Preserving KAN Inference Using Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2409.07751v1
- Date: Thu, 12 Sep 2024 04:51:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:51:48.898007
- Title: Efficient Privacy-Preserving KAN Inference Using Homomorphic Encryption
- Title(参考訳): ホモモルフィック暗号を用いた効率的なプライバシ保存型感性推論
- Authors: Zhizheng Lai, Yufei Zhou, Peijia Zheng, Lin Chen,
- Abstract要約: ホモモルフィック暗号化(HE)は、ディープラーニングモデルのプライバシー保護推論を容易にする。
SiLUアクティベーション関数やB-スプライン関数などの非線形要素を組み込んだkanの複雑な構造は、既存のプライバシ保存推論技術が不十分である。
そこで我々は,kansに適した高精度かつ効率的なプライバシ保護型推論手法を提案する。
- 参考スコア(独自算出の注目度): 9.0993556073886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently proposed Kolmogorov-Arnold Networks (KANs) offer enhanced interpretability and greater model expressiveness. However, KANs also present challenges related to privacy leakage during inference. Homomorphic encryption (HE) facilitates privacy-preserving inference for deep learning models, enabling resource-limited users to benefit from deep learning services while ensuring data security. Yet, the complex structure of KANs, incorporating nonlinear elements like the SiLU activation function and B-spline functions, renders existing privacy-preserving inference techniques inadequate. To address this issue, we propose an accurate and efficient privacy-preserving inference scheme tailored for KANs. Our approach introduces a task-specific polynomial approximation for the SiLU activation function, dynamically adjusting the approximation range to ensure high accuracy on real-world datasets. Additionally, we develop an efficient method for computing B-spline functions within the HE domain, leveraging techniques such as repeat packing, lazy combination, and comparison functions. We evaluate the effectiveness of our privacy-preserving KAN inference scheme on both symbolic formula evaluation and image classification. The experimental results show that our model achieves accuracy comparable to plaintext KANs across various datasets and outperforms plaintext MLPs. Additionally, on the CIFAR-10 dataset, our inference latency achieves over 7 times speedup compared to the naive method.
- Abstract(参考訳): 最近提案されたコルモゴロフ・アルノルドネットワーク(KAN)は、解釈可能性の向上とモデル表現性の向上を提供する。
しかし、Kans氏は推論中のプライバシー漏洩に関する課題も提示している。
ホモモルフィック暗号化(HE)は、ディープラーニングモデルのプライバシ保護推論を促進し、リソース制限されたユーザが、データセキュリティを確保しながらディープラーニングサービスのメリットを享受できるようにする。
しかし、SiLUアクティベーション関数やB-スプライン関数のような非線形要素を取り入れたkanの複雑な構造は、既存のプライバシ保存推論手法を不十分にしている。
この問題に対処するために,kan に適した正確かつ効率的なプライバシ保護型推論手法を提案する。
提案手法では,SiLUアクティベーション関数のタスク固有多項式近似を導入し,実世界のデータセット上で高い精度で近似範囲を動的に調整する。
さらに, HE領域内でのB-スプライン関数の効率的な計算法を開発し, 繰り返しパッキング, 遅延結合, 比較関数などの手法を活用する。
シンボル式評価と画像分類の両面において,プライバシ保存型kan推論方式の有効性を評価する。
実験結果から,本モデルは各種データセットのプレーンテキストkanに匹敵する精度を達成し,平文MLPよりも優れることがわかった。
さらに、CIFAR-10データセットでは、我々の推論遅延は、単純な手法に比べて7倍以上のスピードアップを達成する。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
本稿ではサンプルベースおよび特徴ベース連合最適化について検討する。
提案アルゴリズムは,モデルアグリゲーション機構を通じてデータプライバシを保持できることを示した。
また,提案アルゴリズムは,各フェデレーション最適化問題のKarush-Kuhn-Tucker点に収束することを示した。
論文 参考訳(メタデータ) (2021-04-13T08:23:46Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - A Theoretical Perspective on Differentially Private Federated Multi-task
Learning [12.935153199667987]
プライバシーとユーティリティの両方に関して、協調学習モデルを開発する必要がある。
本稿では,クライアントレベルで保護する効果的なパラメータ転送差分プライバシーのための,新しいフェデレーションマルチタスクを提案する。
このような提案されたアルゴリズムに対して、プライバシユーティリティの両方の保証を提供するのは、当社が初めてです。
論文 参考訳(メタデータ) (2020-11-14T00:53:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。