論文の概要: Universal Pooling Method of Multi-layer Features from Pretrained Models for Speaker Verification
- arxiv url: http://arxiv.org/abs/2409.07770v1
- Date: Thu, 12 Sep 2024 05:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:41:46.044636
- Title: Universal Pooling Method of Multi-layer Features from Pretrained Models for Speaker Verification
- Title(参考訳): 話者検証のための事前学習モデルからの多層特徴量の普遍的ポーリング法
- Authors: Jin Sob Kim, Hyun Joon Park, Wooseok Shin, Sung Won Han,
- Abstract要約: 大規模事前学習ネットワークを活用した自動話者検証(ASV)研究の最近の進歩が達成されている。
ASVのための事前学習モデルの多層特性を利用するための新しい手法を提案する。
提案した層間処理が,事前学習モデルを利用する利点の最大化にどのように役立つかを示す。
- 参考スコア(独自算出の注目度): 7.005068872406135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in automatic speaker verification (ASV) studies have been achieved by leveraging large-scale pretrained networks. In this study, we analyze the approaches toward such a paradigm and underline the significance of interlayer information processing as a result. Accordingly, we present a novel approach for exploiting the multilayered nature of pretrained models for ASV, which comprises a layer/frame-level network and two steps of pooling architectures for each layer and frame axis. Specifically, we let convolutional architecture directly processes a stack of layer outputs.Then, we present a channel attention-based scheme of gauging layer significance and squeeze the layer level with the most representative value. Finally, attentive statistics over frame-level representations yield a single vector speaker embedding. Comparative experiments are designed using versatile data environments and diverse pretraining models to validate the proposed approach. The experimental results demonstrate the stability of the approach using multi-layer outputs in leveraging pretrained architectures. Then, we verify the superiority of the proposed ASV backend structure, which involves layer-wise operations, in terms of performance improvement along with cost efficiency compared to the conventional method. The ablation study shows how the proposed interlayer processing aids in maximizing the advantage of utilizing pretrained models.
- Abstract(参考訳): 大規模事前学習ネットワークを活用した自動話者検証(ASV)研究の最近の進歩が達成されている。
本研究では,このようなパラダイムへのアプローチを分析し,その結果として層間情報処理の意義を浮き彫りにする。
そこで本研究では,レイヤ/フレームレベルのネットワークと,各レイヤおよびフレーム軸に対するプールアーキテクチャの2段階からなる,事前訓練されたASVモデルの多層特性を活用するための新しいアプローチを提案する。
具体的には、畳み込み型アーキテクチャで直接レイヤー出力のスタックを処理させ、さらに、チャネルアテンションに基づく層重み付け方式を提示し、最も代表的な値で層レベルを絞り込む。
最後に、フレームレベルの表現に対する注意統計は、単一のベクトル話者埋め込みをもたらす。
比較実験は、多目的データ環境と多様な事前学習モデルを用いて設計され、提案手法の検証を行う。
実験により,事前学習アーキテクチャの活用における多層出力を用いたアプローチの安定性を実証した。
そこで我々は,従来の手法に比べて性能改善とコスト効率の両面から,レイヤワイドな操作を含むASVバックエンド構造の優位性を検証した。
アブレーション研究は、提案した層間処理が、事前訓練されたモデルを利用する利点の最大化にどう役立つかを示す。
関連論文リスト
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - Layer by Layer: Uncovering Hidden Representations in Language Models [28.304269706993942]
中間層がよりリッチな表現をエンコードできることを示し、ダウンストリームタスクの幅広いパフォーマンスを改善することがよくある。
本フレームワークでは,各モデル層が情報圧縮と信号保存のバランスをとる方法を強調している。
これらの知見は、最終層埋め込みに標準的焦点をあて、モデル解析と最適化のための新しい方向を開くことに挑戦する。
論文 参考訳(メタデータ) (2025-02-04T05:03:42Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
出力層の前に配置された特定のプロジェクション演算子を備えた多出力ディープニューラルネットワークで構成されている。
このようなアーキテクチャの設計は、LH-DNN(Lexicographic Hybrid Deep Neural Network)と呼ばれ、異なる研究分野と非常に離れた研究分野のツールを組み合わせることで実現されている。
アプローチの有効性を評価するために、階層的な分類タスクに適した畳み込みニューラルネットワークであるB-CNNと比較する。
論文 参考訳(メタデータ) (2024-09-25T14:12:50Z) - Enhancing Out-of-Distribution Detection with Multitesting-based Layer-wise Feature Fusion [11.689517005768046]
アウト・オブ・ディストリビューション(Out-of-distriion)サンプルは、トレーニング分布と比較して、局所的またはグローバルな特徴の変化を示す可能性がある。
本稿では,新しいフレームワーク,Multitesting-based Layer-wise Out-of-Distribution (OOD) を提案する。
本手法は, ベースライン法と比較して, 分布外検出の性能を効果的に向上させる。
論文 参考訳(メタデータ) (2024-03-16T04:35:04Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
特徴抽出手順と早期分類タスクを分離する動的知覚器(Dyn-Perceiver)を提案する。
特徴ブランチは画像の特徴を抽出し、分類ブランチは分類タスクに割り当てられた遅延コードを処理する。
早期出口は分類枝に限られており、低レベルの特徴において線形分離性は不要である。
論文 参考訳(メタデータ) (2023-06-20T03:00:22Z) - WLD-Reg: A Data-dependent Within-layer Diversity Regularizer [98.78384185493624]
ニューラルネットワークは、勾配に基づく最適化と共同で訓練された階層構造に配置された複数の層で構成されている。
我々は、この従来の「中間層」フィードバックを補うために、同じ層内での活性化の多様性を促進するために、追加の「中間層」フィードバックを補うことを提案する。
本稿では,提案手法が複数のタスクにおける最先端ニューラルネットワークモデルの性能を向上させることを実証した広範な実証研究を提案する。
論文 参考訳(メタデータ) (2023-01-03T20:57:22Z) - AIO-P: Expanding Neural Performance Predictors Beyond Image
Classification [22.743278613519152]
アーキテクチャの例でニューラルネットワーク予測器を事前訓練するための新しいオールインワン予測器(AIO-P)を提案する。
AIO-Pは平均絶対誤差(MAE)とスピアマンランク相関(SRCC)をそれぞれ1%以下と0.5以上で達成できる。
論文 参考訳(メタデータ) (2022-11-30T18:30:41Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
マルチモーダル相互情報事前学習(M3I事前学習)を最大化するオールインワン単段階事前学習手法を提案する。
提案手法は,ImageNet分類,オブジェクト検出,LVIS長鎖オブジェクト検出,ADE20kセマンティックセマンティックセマンティックセマンティクスなど,様々なビジョンベンチマークにおける事前学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-17T18:59:49Z) - LV-BERT: Exploiting Layer Variety for BERT [85.27287501885807]
我々は,事前学習モデルに有益である層型集合に畳み込みを導入する。
次に、事前学習による進化的アルゴリズムを採用し、最適なアーキテクチャを求める。
提案手法により得られたLV-BERTモデルは,様々な下流タスクにおいてBERTとその変種より優れる。
論文 参考訳(メタデータ) (2021-06-22T13:20:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。