論文の概要: ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation
- arxiv url: http://arxiv.org/abs/2409.07774v1
- Date: Thu, 12 Sep 2024 06:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:41:46.038569
- Title: ROCAS: Root Cause Analysis of Autonomous Driving Accidents via Cyber-Physical Co-mutation
- Title(参考訳): ROCAS:サイバー物理共変による自律運転事故の根本原因分析
- Authors: Shiwei Feng, Yapeng Ye, Qingkai Shi, Zhiyuan Cheng, Xiangzhe Xu, Siyuan Cheng, Hongjun Choi, Xiangyu Zhang,
- Abstract要約: 既存のサイバー物理システム(CPS)の根本原因分析技術は主にドローン用に設計されている。
サイバー物理コミューテーションを特徴とする新しいADS根本原因分析フレームワークであるROCASを紹介する。
ADS事故の12カテゴリーについて検討し, ROCASの有効性と有効性を示した。
- 参考スコア(独自算出の注目度): 16.76106822218872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Autonomous driving systems (ADS) have transformed our daily life, safety of ADS is of growing significance. While various testing approaches have emerged to enhance the ADS reliability, a crucial gap remains in understanding the accidents causes. Such post-accident analysis is paramount and beneficial for enhancing ADS safety and reliability. Existing cyber-physical system (CPS) root cause analysis techniques are mainly designed for drones and cannot handle the unique challenges introduced by more complex physical environments and deep learning models deployed in ADS. In this paper, we address the gap by offering a formal definition of ADS root cause analysis problem and introducing ROCAS, a novel ADS root cause analysis framework featuring cyber-physical co-mutation. Our technique uniquely leverages both physical and cyber mutation that can precisely identify the accident-trigger entity and pinpoint the misconfiguration of the target ADS responsible for an accident. We further design a differential analysis to identify the responsible module to reduce search space for the misconfiguration. We study 12 categories of ADS accidents and demonstrate the effectiveness and efficiency of ROCAS in narrowing down search space and pinpointing the misconfiguration. We also show detailed case studies on how the identified misconfiguration helps understand rationale behind accidents.
- Abstract(参考訳): 自律運転システム(ADS)が私たちの日常生活を変えてきたため、ADSの安全性はますます重要になっている。
ADSの信頼性を高めるための様々なテストアプローチが登場したが、事故の原因を理解する上で重要なギャップは依然として残っている。
このような事故後の分析は、ADSの安全性と信頼性を高める上で最重要かつ有益である。
既存のサイバー物理システム(CPS)の根本原因分析技術は主にドローン用に設計されており、より複雑な物理的環境や深層学習モデルによってもたらされる固有の課題に対処できない。
本稿では,ADSの根本原因分析の形式的定義と,サイバー物理共変を特徴とする新たな根本原因解析フレームワークであるROCASを導入することにより,このギャップに対処する。
本手法は,事故トリガーを正確に識別し,事故の原因となるターゲットADSの誤設定を特定できる物理的変異とサイバー突然変異の両方を独自に活用する。
さらに,誤設定の検索スペースを削減するために,責任モジュールを識別するための差分解析を設計する。
本研究では,ADS事故の12カテゴリーについて検討し,探索空間の縮小と誤設定の特定におけるROCASの有効性と有効性を示す。
また,事故の背景にある理性を理解する上で,誤設定がいかに役立つか,詳細なケーススタディを示す。
関連論文リスト
- Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Characterization and Mitigation of Insufficiencies in Automated Driving Systems [0.5842419815638352]
自動運転(AD)システムは安全性、快適性、エネルギー効率を高める可能性がある。
ADSの商業展開と広く採用は、部分的には乗客の安全を損なうシステム機能不全(FI)が道路の危険状況を引き起こしているため、穏健である。
本研究の目的は、FI緩和を改善し、ADSの商業展開を高速化するために、汎用的なアーキテクチャ設計パターンを定式化することである。
論文 参考訳(メタデータ) (2024-04-15T08:19:13Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Towards Automated Driving Violation Cause Analysis in Scenario-Based
Testing for Autonomous Driving Systems [22.872694649245044]
本稿では,運転違反原因分析(DVCA)ツールを提案する。
本ツールでは, 完全コンポーネントレベルの属性精度(100%), ほぼ完全なメッセージレベルの精度(>98%)を実現する。
論文 参考訳(メタデータ) (2024-01-19T01:12:37Z) - ACAV: A Framework for Automatic Causality Analysis in Autonomous Vehicle
Accident Recordings [5.578446693797519]
近年の死者は、大規模な検査による安全性検証の重要性を強調している。
本稿では,AV事故記録の因果解析を行うための自動フレームワークACAVを提案する。
我々はアポロADSでACAVを評価し、110件の事故記録の93.64%で5種類の因果事象を特定できることを発見した。
論文 参考訳(メタデータ) (2024-01-13T12:41:05Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
本研究では,アンサンブルに基づく機械学習による車両ネットワークにおけるサイバー脅威の検出について検討する。
我々は,Random Forest と CatBoost を主要な研究者として用いたモデルを提案し,ロジスティック回帰を用いて最終的な決定を下す。
我々は,本手法が分類精度を向上し,過去の研究に比べて誤分類が少ないことを観察した。
論文 参考訳(メタデータ) (2023-12-08T10:39:18Z) - Causal Structure Learning with Recommendation System [46.90516308311924]
まず,その基盤となる因果構造を因果構造モデルとして定式化し,提案システムの現実的な作業機構を基盤とした一般的な因果構造学習フレームワークについて述べる。
次に,本フレームワークから学習目標を導出し,効率的な最適化のための拡張ラグランジアンソルバを提案する。
論文 参考訳(メタデータ) (2022-10-19T02:31:47Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
この調査は、自動運転システムを危うくする可能性のあるさまざまな攻撃の詳細な分析を提供する。
さまざまなディープラーニングモデルに対する敵意攻撃と、物理的およびサイバー的コンテキストにおける攻撃をカバーする。
深層学習に基づく自動運転の安全性を向上させるために、いくつかの有望な研究方向が提案されている。
論文 参考訳(メタデータ) (2021-04-05T06:31:47Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。